Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo

 

Unsupported browser: Your browser does not meet modern web standards. See how it scores »

By harvesting a patient’s CD34+ cells from bone marrow, amplifying them, and injecting them directly into the damaged portion of the heart, Losordo says, he is circumventing natural steps that these people’s bodies might not be equipped to perform anymore. In animal studies, he found that the cells were naturally recruited to the heart after an injury to help repair damaged tissue. His research suggests that they secrete growth factors and immune molecules.

“These cells seem to represent one of the natural mechanisms for helping to repair damaged tissue,” he says. “We’re taking a preprogrammed repair mechanism and simply trying to leverage that in patients who have been damaged over the course of many years or decades.”

Lee compliments the thorough nature of Losordo’s work. “I think that this is a promising study, because it was so carefully done and because this patient population can be very incapacitated,” Lee says.

However, he offers three reasons for caution. First, patients in the placebo arm of the study also showed dramatic improvements. Second, although the procedure seemed generally safe, the patients’ hearts released an enzyme that is typically discharged when damage occurs. And third, patients receiving a lower dose of the stem cells fared as well or better than those receiving a higher dose.

“That really implies that we really don’t know what’s going on,” Lee says. “You like to see dose-dependence. If it’s the low-dose [that’s most effective], then you wonder, can we go lower and get the same effect? Have we missed the real benefit?” Other cell therapies for the heart suffer from similar shortcomings, Lee notes.

Losordo expects to start the final phase of clinical trials in a larger group of patients at the end of this year. Trials have already begun using CD34+ cells to help restore blood vessels in people at risk for amputation and in patients with artery blockages in their legs. 

0 comments about this story. Start the discussion »

Credit: Northwestern University

Tagged: Biomedicine, heart, stem cell science, surgery, pain, heart cells

Reprints and Permissions | Send feedback to the editor

From the Archives

Close

Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me