Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo

 

Unsupported browser: Your browser does not meet modern web standards. See how it scores »

Super charger: A prototype turbine rotor made using superconducting materials developed by Advanced Magnet Lab, one of the six DOE funding recipients.

GE believes it can develop an eight-megawatt generator that weights only 50 tons by adapting the superconducting electromagnets used in magnetic resonance imaging. Unlike a permanent magnet, an electromagnet creates a magnetic field when an electric current is applied to it. When made from coils of superconducting wire, it has no electrical resistance, making it more efficient, with the caveat that it must be cooled to minus 250 °C. The approach would eliminate the need for rare-earth materials, assuming GE can lower the cost enough to make it commercially viable.

Florida-based Advanced Magnet Lab, which also received DOE funding, believes it can build a 10-megawatt generator that weighs just 70 tons. As with GE’s technology, the core of the company’s innovation is a superconducting direct-drive generator. The company has developed a compact coil design based on double-helix windings that can carry high currents and handle the immense magnetic forces produced in the system.

Advanced Magnet Lab president Mark Senti says the high cost of superconducting materials and of cryogenically cooling makes no sense for today’s three-megawatt wind turbines. But beyond six megawatts, he argues, the systems become competitive with conventional generator designs. At 10 megawatts, “it gives you the highest power-per-weight ratio.”

There’s also significant room for advancement. Senti says most superconducting wiring costs $400 per meter today, but new materials made out of inexpensive magnesium and boron powders promise to lower costs substantially. With improvements in manufacturing and less expensive cooling techniques, Senti figures superconducting technology could eventually become economical for wind turbines as small as two megawatts, making it ideal for both onshore and offshore markets.

Superconductivity isn’t in everyone’s plans. One of the other funding recipients, Boulder Wind Power, is focused on designing a better stator—stationary coil—for direct drive systems. Instead of copper wiring wound around a heavy iron core, the company’s stator is made of printed circuit boards. These lightweight components can be manufactured in high volume and assembled in modules, making them easier to repair in remote offshore locations. “With this design, you just send a couple of guys out there to remove a stator segment and literally plug in a new one,” says Derek Pletch, vice president of turbine development at Boulder Wind.

NREL, meanwhile, is taking a hybrid approach by designing a medium-speed drivetrain that uses a simpler single-stage gearbox and a medium-sized generator. Felker says the approach can be easily adapted to existing designs and be picked up in the marketplace faster. Clipper Windpower and Dehlsen Associates also received funding. After six months, the DOE is expected to shortlist the designs and contribute an additional $2 million to each project for performance testing.

21 comments. Share your thoughts »

Credits: Siemens, Advanced Magnet Lab

Tagged: Energy, renewable energy, GE, wind power, Siemens

Reprints and Permissions | Send feedback to the editor

From the Archives

Close

Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me