Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo

 

Unsupported browser: Your browser does not meet modern web standards. See how it scores »

{ action.text }



With the aid of a $2.1 million grant from the Department of Energy, On-Ramp is now working with utility San Diego Gas and Electric to monitor hard-to-reach pieces of energy infrastructure. In other trials, On-Ramp is working with oil company Shell to link up pressure sensors on gas pipelines in Europe, and with defense contractors interested in tracking objects equipped with Ultra-Link Processing transmitters.

At the heart of the technology is a suite of proprietary algorithms for transmitting and decoding data signals. These enable On-Ramp’s receivers to pluck a signal that has been weakened by distance out of the noise generated by other Wi-Fi and radio signals in the same frequency bands. The technology can even pick up signals that are weaker than the surrounding background noise, says Myers—something that devices using cellular or mesh networks cannot do. According to standard models for predicting wireless performance in real-world scenarios, On-Ramp’s technology is able to use signals roughly 100 times (20dB) weaker than those needed for a cellular link, and 3000 times (35 dB) weaker than those needed for grid sensors that link together into a mesh network, he says. It can even send signals from sensors underground, for example on subterranean electric or gas lines.

Chips that have On-Ramp’s proprietary technology built in are required, though. Devices used in trial deployments so far have been based on a first-generation chip produced in Taiwan. A version due this fall, the MicroNode pictured, is roughly a third cheaper, and it will make smart meters equipped with On-Ramp’s technology competitive with those already being rolled out by some utilities, says Myers.

Rajit Gadh, who researches smart-grid technology and deployments at the University of California, Los Angeles, says that utilities are certainly interested in reducing the cost of smart-grid infrastructure, and adds that new types of wireless networks could help. “There’s not an exact match between the technology that’s out there and what the smart grid needs to really deliver,” says Gadh. “There will be wireless links operating at a range of different frequencies used in different scenarios, for example urban or rural areas, or developing-world cities that are denser.”

Most technology in use today, Gadh says, was developed for other purposes. For example, many smart-grid deployments use the Zigbee protocol that was originally intended for linking up appliances in networked homes. However, On-Ramp is competing with many other companies bidding to connect the parts of the smart grid, Gadh points out, and most of these use more established technologies that utilities are much more familiar with.

11 comments. Share your thoughts »

Credit: On-Ramp Wireless

Tagged: Computing

Reprints and Permissions | Send feedback to the editor

From the Archives

Close

Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me