Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo

 

Unsupported browser: Your browser does not meet modern web standards. See how it scores »

{ action.text }

A new type of data storage technology, called phase-change memory, has proven capable of writing some types of data faster than conventional flash based storage. The tests used a hard drive based on prototype phase-change memory chips.

Disks based on solid-state, flash memory chips are increasingly used in computers and servers because they perform faster than conventional magnetic hard drives. The performance of the experimental phase-change disk drive, created by researchers at University of California San Diego, suggests that it won’t be long before that technology is able to give computing devices another speed boost.

The prototype created by the researchers is the first to publically benchmark the performance of a phase-change memory chips working in a disk drive. Several semiconductor companies are working on phase-change chips, but they have not released information about storage devices built with them.

“Phase-change chips are not quite ready for prime time, but if the technology continues to develop, this is what [solid state drives] will look like in the next few years,” says Steve Swanson, who built the prototype, known as Onyx, with colleagues. It had a data capacity of eight gigabytes and went head-to-head with what Swanson calls a “high-end” 80 GB flash drive made for use in servers.

When it came to writing small chunks of data on the order of kilobytes in size, Onyx was between 70 percent and 120 percent faster than the commercial drive. At the same time, the prototype placed significantly less computational load on the processor of the computer using it. It was also much faster at reading data than the flash drive when accessing blocks of data of any size. The kind of large volume, small read and write patterns that Onyx excelled at are a hallmark of the type of calculations involved in analyzing social networks like those of Twitter, says Swanson. However, Onyx was much slower at writing larger chunks of data than its commercially established competitor.

10 comments. Share your thoughts »

Credit: UCSD

Tagged: Computing

Reprints and Permissions | Send feedback to the editor

From the Archives

Close

Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me