Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo

 

Unsupported browser: Your browser does not meet modern web standards. See how it scores »

Previously, combining graphene with other materials has degraded the speed of the resulting electronics. The IBM group prevented this by making sure other materials didn’t contact the graphene in a harmful way. They made arrays of graphene transistors on the surface of silicon carbide wafers coated with graphene. They then etched away the extra graphene surrounding the transistors, leaving a clear surface that was easier for metal inductors to stick to. Ensuring separation between the graphene transistors and the metal inductors also prevented degradation of the transistor’s electrical properties.

The resulting circuits operate at 10 gigahertz—much faster than previous graphene circuits. Lin concedes that they are less reliable than the state of the art silicon frequency mixers but says they expect to close that gap soon.

The IBM researchers plan to make them on the scale of tens rather than hundreds of nanometers. “They can easily be ten times smaller, which would help us surpass the record,” says Lin. “We haven’t seen the limits of graphene devices in terms of speed—we think they can get into the terahertz range.”

The next step is to improve the reliability of the circuits, says Xiangfeng Duan, professor of chemistry at the University of California, Los Angeles. “The signal comes out weaker at the other end,” he notes. “Improving the transistors will help get better circuit performance.”

The IBM group is working on this problem, and is developing more complex graphene integrated circuits. Lin says the method used for the frequency-mixer circuits will work for other types of circuits. “This is the first step towards a new level of potential,” he says. “Perhaps we won’t see the real impact of graphene for another five to ten years.”

0 comments about this story. Start the discussion »

Credit: Science/AAAS

Tagged: Computing, Materials, wireless, graphene, manufacturing, integrated circuits

Reprints and Permissions | Send feedback to the editor

From the Archives

Close

Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me
×

A Place of Inspiration

Understand the technologies that are changing business and driving the new global economy.

September 23-25, 2014
Register »