Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo

 

Unsupported browser: Your browser does not meet modern web standards. See how it scores »

Moore conducted a similar study at the Walter Reed Army Hospital in 2009, using DTI to study the brains of injured U.S. military personnel, on average about 80 days after a blast event. This study also showed damage to the brain’s white matter; the results are expected to be published in the next months.

“DTI is very sensitive to the diffusion of water, which, in organized tissues, moves more readily along the axon,” says Christine Mac Donald, a research instructor in neurology at Washington University and director of the study. “We used the water diffusion patterns along these tracks to infer changes that represent axonal injury,” says Mac Donald. The researchers also examined 21 control subjects—men exposed to blasts recently but with no symptoms of concussions.

All the men in the study had experienced what’s known as a “blast-plus” event, meaning they experienced the rapid pressure wave of a blast and had blunt trauma to the head. On average, the subjects were studied 14 days after they were admitted to Landstuhl Regional Medical Center. A second evaluation took place in the U.S. within a year. The second scan showed persistent abnormalities that were consistent with evolving injuries.

Mac Donald, who conducted the study with principal investigator David Brody, an assistant professor of neurology at Washington University, says the study is a first step in determining the pathology of traumatic brain injury, and in being able to diagnose the injury.

Barclay Morrison, an associate professor of biomedical engineering at Columbia University, says subtle structural damage to the brain after a blast is tough to detect, but that is what affects cognitive functions like sleep, memory, and planning. However, while DTI was able to detect most of these subtle changes, it is too early to correlate the damage with behaviors. “Now that we have a way to identify the injury, the next step is to find the underlying injury mechanism—what is happening to the white matter?”

David Hovda, director of the Brain Injury Research at the University of California, Los Angeles, says the study opens up a gateway for the military to make progress in understanding and treating traumatic brain injury. “For many years, traumatic brain injury was an underappreciated problem, a silent epidemic around the world. Now we can say these symptoms are real, and we have an imaging technique to prove it,” says Hovda.

Mac Donald says DTI could be implemented in hospitals or medical stations fairly easily. It uses an MRI machine and requires an upgrade to the software but no additional hardware.

There is still more research to be done, though. “We are looking at a larger group of patients and trying to shed light on the relationship between these findings and functional outcome—what does it mean for me as a patient? What does it tell the doctor about how to treat me or my symptoms?” Mac Donald says.

2 comments. Share your thoughts »

Credit: The New England Journal of Medicine

Tagged: Biomedicine, MRI, medical imaging, brain injury, brain damage, DTI, soldiers

Reprints and Permissions | Send feedback to the editor

From the Archives

Close

Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me