Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo

 

Unsupported browser: Your browser does not meet modern web standards. See how it scores »

A sophisticated imaging technique has revealed signs of brain injury in soldiers injured in explosions. The injuries, which don’t show up with standard imaging techniques, may help explain why some soldiers suffer long-term problems after such injuries.

Brain injuries caused by blasts from improvised explosive devices, rocket-propellant grenades, or land mines in Iraq and Afghanistan are a major concern for the U.S. military. An estimated 10 to 20 percent of all deployed troops have experienced mild traumatic brain injuries as a result of such blasts. And although these injuries are linked to long-term psychological and mental problems, medical experts lack the means to detect any resulting physical damage.

A study by researchers at the Washington University School of Medicine in St. Louis and the U.S. military found that damage to the brain can be detected using an advanced form of magnetic resonance imaging (MRI) called diffusion tensor imaging (DTI). This technique tracks the movement of water molecules through the brain, providing a detailed picture of the brain’s white matter—the neural wiring that connects cells. Damage to this tissue has long been associated with mild traumatic brain injury.

The researchers studied 63 soldiers who were diagnosed with traumatic brain injury after being injured in explosions in Iraq and Afghanistan. The diagnosis was based on such symptoms as loss of consciousness, confusion, and headaches. Standard imaging methods, including MRI and CT, did not show any brain injury in most cases. The researchers studied the soldiers within 90 days of admission to the Landstuhl Regional Medical Center in Germany, and again six to 12 months later.

In the study, conducted from 2008 to 2009 and published June 2 in the New England Journal of Medicine, the researchers found that 18 of the 63 subjects diagnosed with traumatic brain injury had abnormalities in the white matter in two or more regions of the brain. A further 20 subjects had abnormalities in one area, and 25 had none. The abnormalities were also consistent with computer simulations of the likely effect of explosions on the brain.

“The significance of the new study is that it contains data across time,” says David Moore, a professor of neurology at Tulane University School of Medicine in Louisiana and the former deputy director of the Defense and Veterans Brain Injury Center in Washington, D.C. “A year later, the DTI findings showed there were still abnormalities in the brain’s white matter, suggesting that this type of injury can have long-lasting effects.”

2 comments. Share your thoughts »

Credit: The New England Journal of Medicine

Tagged: Biomedicine, MRI, medical imaging, brain injury, brain damage, DTI, soldiers

Reprints and Permissions | Send feedback to the editor

From the Archives

Close

Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me