Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo

 

Unsupported browser: Your browser does not meet modern web standards. See how it scores »

Last year, the battery startup A123 Systems spun out another company, called 24M, to develop a new kind of battery meant to make electric vehicles go farther and cost less. Now a research paper published in Advanced Energy Materials reveals the first details about how that battery would work. It also addresses the challenges in bringing the battery to market.

A big problem with the lithium-ion batteries used in electric vehicles and plug-in hybrids is that only about 25 percent of the battery’s volume is taken up by materials that store energy. The rest is made up of inactive materials, such as packaging, conductive foils, and glues, which make the batteries bulky and account for a significant part of the cost. 

24M intends to greatly reduce the inactive material in a battery.  According to estimates in the new paper, its batteries could achieve almost twice the energy densities of today’s vehicle battery packs. Batteries with a higher energy density would be smaller and cheaper, which means electric and hybrid cars would be less expensive. The paper estimates that the batteries could cost as little as $250 per kilowatt hour—less than half what they cost now.

A conventional battery pack is made up of hundreds of cells. Each cell contains a stack of many thin, solid electrodes. These electrodes are paired with metal foil current collectors and separated from each other by plastic films. Increasing the energy storage requires adding more layers of electrode material—which in turn requires more layers of metal foil and plastic film.

24M’s design makes it possible to increase energy storage without the extra metal foil and plastic film. The key difference is that the electrodes are not solid films stacked in a cell, but sludge-like materials stored in tanks—one for the positive electrode material and another for the negative electrode.

The materials are pumped from the tanks into a small device, where they move through channels carved into blocks of metal. As this happens, ions move from one electrode to the other through the same kind of separator material used in a conventional battery. Electrons make their way out of the material to an external circuit. In this design, increasing energy storage is as simple as increasing the size of the storage tanks—the device that allows the electrodes to interact stays the same size. The design also does away with the need to wire together hundreds of cells to achieve adequate energy storage.

The new battery is similar to something called a flow battery, in which two electrolytes are pumped past each other. But conventional flow batteries are about 10 times larger than the new design because they use dilute energy storage solutions, which makes them impractical for use in cars.

Gain the insight you need on energy at EmTech MIT.

Register today

6 comments. Share your thoughts »

Credit: Yet-Ming Chiang

Tagged: Energy, energy, battery, electric vehicle, lithium ion, flow battery, 24M

Reprints and Permissions | Send feedback to the editor

From the Archives

Close

Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me
×

A Place of Inspiration

Understand the technologies that are changing business and driving the new global economy.

September 23-25, 2014
Register »