Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo


Unsupported browser: Your browser does not meet modern web standards. See how it scores »

{ action.text }

Remember this?: Someone who browses listings for bike trailers on a site run by CSN Stores (upper left) might later see a related ad on a separate website, such as Weather Underground.

For every 100 people who visit a retailer’s website, only about two will buy something; the other 98 will just leave. But with enough reminders, some of these 98 people might become customers someday. The trick is to figure out which ones they are, and then to nudge them by means of targeted ads. The practice is known as retargeting, and it’s growing on the Web.

When you see an online ad for a product you previously looked at on a different website, you’ve been retargeted. Making that happen is the business of companies like TellApart, which was founded in 2009 by Mark Ayzenshtat and Josh McFarland. They came from Google, where they had both worked on AdWords and other advertising platforms. TellApart uses data it gleans from online retail traffic to predict whether someone who leaves a given website is still a likely customer of that site—or not. People deemed likely to return can be shown ads for the site whenever an opportunity arises on the real-time bidding exchanges used to fill online ad space. “We only get paid when we drive a sale,” says Ayzenshtat. “We’re confident that this works.” About 7.5 percent of viewers click through on their personalized ads, the company says. If so, that is dozens of times higher than the click-through rates on generic Web ads. And about 4.5 percent of those who click on a TellApart-generated ad eventually make a purchase, the company says.

Ayzenshtat says the company’s algorithms assess site visitors much as a salesperson would in a physical store. “When you walk in, the salesperson develops a profile based on what you’re wearing, who you’re with, if you have other shopping bags,” says Ayzenshtat. “In the online world, the signals are harder to tease out.”

To do it, TellApart’s servers sift through a tremendous amount of data provided by the online retailers it works with. For instance, when someone visits a site, it can examine where the person had been previously: did he click a link from a blog or an ad? Did he end up at after searching for a particular crib that he had also checked out on other sites? And once on the retail site, what did he do? Did he leave after seeing one page, or did he seem to be comparison-shopping? Also factored in are what products a customer browses on the site, whether they are all in a particular category, and how popular these items are with other visitors. TellApart’s algorithms use the time of day and location to determine whether a person is browsing at home or at work. It follows the user by placing a cookie in his Web browser, a standard method of keeping track of people online.

0 comments about this story. Start the discussion »

Credit: TellApart

Tagged: Business, Business Impact, advertising, Understanding the Customer

Reprints and Permissions | Send feedback to the editor

From the Archives


Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me