Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo


Unsupported browser: Your browser does not meet modern web standards. See how it scores »

{ action.text }

The difference in salinity between freshwater and saltwater holds promise as a large source of renewable energy. Energy is required to desalinate water, and running the process in reverse can generate energy. Now a novel approach based on a conventional battery design that uses nanomaterials could provide a way to harvest that energy economically.  

The new device, developed by researchers at Stanford University, consists of an electrode that attracts positive sodium ions and one that attracts negative chlorine ions. When the electrodes are immersed in saltwater, they draw sodium and chlorine ions from the water, and the movement of the ions creates an electrical current. The electrodes are recharged by draining the saltwater, replacing it with freshwater, and applying a relatively low-voltage electrical current, which draws the ions back out of the electrodes. When the freshwater is drained, the electrodes are ready to attract more ions from the next batch of saltwater. 

“It is the opposite process of water desalination, where you put in energy and try to generate freshwater and more concentrated saltwater,” says Yi Cui, a materials science and engineering professor at Stanford University and the study’s lead author. “Here you start with freshwater and concentrated saltwater, and then you generate energy.”

Cui’s group converted to electricity 74 percent of the potential energy that exists between saltwater and freshwater, with no decline in performance over 100 cycles. Placing the electrodes closer together, Cui says, could allow the battery to achieve 85 percent efficiency. 

A power plant using this technology would be based near a river delta where freshwater meets the sea. Drawing 50 cubic meters of river water per second, Cui says, a power plant could produce up to 100 megawatts of power. He calculates that if all of the freshwater from all of the world’s coastal rivers were harnessed, his salinity-gradient process could generate 2 terawatts, or approximately 13 percent of the energy currently used around the world.

Such wide-scale use, however, would seriously disturb sensitive aquatic environments. “I think you would only be able to utilize a very small fraction of this or it would be an ecological disaster,” says Menachem Elimelech, director of the Environmental Engineering Program at Yale University. Elimelech says it would be necessary to pretreat the water to remove suspended material including living organisms. Such processing would require energy, add costs, and itself seriously disturb the ecosystem if done on a large scale. 

19 comments. Share your thoughts »

Credit: Yi Cui

Tagged: Energy, energy, renewable energy, battery, power

Reprints and Permissions | Send feedback to the editor

From the Archives


Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me