Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo


Unsupported browser: Your browser does not meet modern web standards. See how it scores »

{ action.text }

The United States should plan to store spent nuclear fuel in cooling pools and concrete-and-steel casks for 100 years as it sorts out what should be done with it in the long term, according to a new study from MIT. Storing spent fuel temporarily, the study argues, is in some ways better than immediately transferring it into permanent underground storage at facilities like the proposed one at Yucca Mountain.

The report comes in the aftermath of the Fukushima nuclear-power-plant disaster in Japan, where stored fuel was a major source of radioactive material that escaped into the surrounding area. And it comes at a time when many are again worried about the vast amounts of nuclear waste piling up at power plants around the country.

When most nuclear plants were built in the United States, the plan was to reprocess the fuel, retrieving material that could be used to generate more electricity. As a result, plant designers included only enough storage space to deal with about a 10 years’ worth of fuel. When, for multiple reasons, the idea of reprocessing was abandoned, the federal government took on the obligation to dispose of the fuel itself—but so far it hasn’t done so. The question of what to do with spent fuel before sending it to permanent storage “has frankly been an afterthought,” says Ernest Moniz, director of MIT’s Energy Initiative and an author of the report. After decades of operation, many power plants have run out of room and are resorting to ad hoc approaches to deal with the spent fuel.

The report argues that a systematic program of moving spent fuel first into storage pools and then into large concrete-and-steel containers called dry casks at a central storage facility will have many advantages over the current disorganized approach, and also over moving it quickly to a permanent disposal site. Spent fuel contains large amounts of material that can be extracted through reprocessing technologies and then used to generate more electricity. At this point, when uranium is cheap, the authors say, doing so doesn’t make economic sense in the United States. But as technology progresses, reprocessing could become cheaper. Fuel stored in a central location in dry casks could easily be retrieved and reprocessed. In this scenario, spent fuel would go from being waste to being a large energy resource comparable to the strategic petroleum reserve, says Andrew Kadak, a research affiliate at MIT who worked on the MIT report. Storing the fuel in dry casks for several decades would also allow it to cool down to the point that it could be safely stored in a permanent disposal facility smaller and cheaper than those currently envisioned.

15 comments. Share your thoughts »

Credit: NRC

Tagged: Energy, energy, Japan, nuclear power, spent fuel, reprocessing, fukishima

Reprints and Permissions | Send feedback to the editor

From the Archives


Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me