Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo

 

Unsupported browser: Your browser does not meet modern web standards. See how it scores »

The Stanford researchers put down a thin layer of gold with each stamp. Once the gold and nanotubes are in place, the researchers etch away areas of gold where they want to place each transistor’s electrical contacts. They then fill these holes with a metal contact material such titanium and palladium. Finally, they etch away the rest of the gold. This entire structure is built up on top of a silicon dioxide wafer patterned with back gates for the transistors. This work is described online this week in the journal Nano Letters.

Mitra says it should be possible to perform several transfers for for a density of 100 to 200 nanotubes per micrometer. The transfer technique is also compatible with techniques the group has developed in the past to deal with stray metallic nanotubes and the occasional misplaced nanotube.

“Nanotubes are messy to work with today,” says Franklin. But “there is no fundamental bottleneck that says this can’t be done.”

0 comments about this story. Start the discussion »

Credit: Nano Letters/ACS

Tagged: Computing, Materials, silicon, electronics, carbon nanotubes, nanoelectronics, fabrication

Reprints and Permissions | Send feedback to the editor

From the Archives

Close

Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me