Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo


Unsupported browser: Your browser does not meet modern web standards. See how it scores »

{ action.text }

The researchers also discovered novel mutations that haven’t previously been linked to cancer, pointing to new avenues for research. “No one studying myeloma had even heard of these genes,” says Golub. “We don’t know what these mutations do or how they cause cancer, or even whether they will make good drug targets, but it tells you this is where the field should be looking in greater detail.”

The project was the brainchild of the Multiple Myeloma Research Foundation, a patient advocacy group that funded the research and provided cancer samples. About 20,000 new cases of multiple myeloma are diagnosed in the U.S. each year. The disease has a five-year survival rate of less than 40 percent. Kathy Giusti, the organization’s founder, says the findings are already being used to direct funding decisions. The study identified mutations in enzymes involved in the way DNA is packaged, so the foundation has invested $5 million in this area of research and funded two biotech companies working in the field. 

Scientists are now sequencing additional myeloma genomes and expect to have a few hundred completed in the next two years. “The field is barreling forward such that we expect many thousands of genomes to be sequenced across different cancer types in next several years,” says Golub.

The next step is to figure out what role these mutations play in cancer. “Do they activate or inactivate growth and survival, drug resistance, or signaling pathways?” says Anderson. To do this, scientists study the effect of the mutations in cancer cell lines and animal models of the disease. “That will open the potential for development of novel targeted therapeutics directed at fundamental genetic abnormalities that are hallmarks of this disease,” says Anderson.

0 comments about this story. Start the discussion »

Credit: Wikipedia Commons

Tagged: Biomedicine, cancer, DNA, genome, sequencing, Broad Institute, myeloma

Reprints and Permissions | Send feedback to the editor

From the Archives


Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me