Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo


Unsupported browser: Your browser does not meet modern web standards. See how it scores »

{ action.text }

Circuit design is usually no place for mistakes. But new research shows that introducing a controlled quantity of errors into a simple circuit can double its speed while also halving its energy consumption and size.

The researchers behind the work are using the design method to create hearing aids that they hope will have much longer battery lives. The methods could also improve the efficiency of other specialized circuits used in displays and cameras.

Researchers led by Krishna Palem, a professor of computing at Rice University, have designed an algorithm that modifies a circuit’s design to make it more efficient, given a set rate of errors that can be tolerated. Researchers from Palem’s lab presented the work last week at the DATE11 conference in Grenoble, France.

Allowing for a predetermined rate of errors can lead to major efficiency gains without a noticeable drop in performance. As long as the errors are introduced in a controlled way, and the most important parts of an operation are protected from error, small errors are tolerable in many applications—for example, in audio and graphical signal processing. A single such computational mistake might result in a tiny, momentary distortion in an image or sound that most people would not be able to detect.

Lowering the voltage a circuit uses in order to decrease power consumption will introduce errors. When the voltage is lower, some parts of a circuit run slower than the rest, leading to mistakes. Computer scientists have made chips that vary the voltage of different parts of the circuit on the fly. But these designs are complex and increase the size of a chip.

“You can think of a circuit like a network of roads,” says Palem. As information flows through a circuit, some paths have heavy traffic, some hardly any. The Rice group’s algorithm analyzes a circuit to identify paths that can be “pruned,” while only introducing tolerable errors. “We ran audio files through the circuit, and looked for zones of high, medium, and low activity over a series of diagnostic trials,” explains Palem.

1 comment. Share your thoughts »

Credit: Rice University

Tagged: Computing, Communications, electronics, energy efficiency, algorithms, microprocessors, probability, electronic circuits

Reprints and Permissions | Send feedback to the editor

From the Archives


Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me