Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo


Unsupported browser: Your browser does not meet modern web standards. See how it scores »

{ action.text }

A key next step is to repair or replace the heat exchanger system to provide a way to remove heat from the seawater. This will eliminate the need to vent steam, which contains radioactive materials, into the atmosphere.

The reactors at the nuclear plant, built in the early 1970s, rely on active cooling systems that require electricity. Newer plant designs would lessen or eliminate the need for active cooling, making use of natural convection or a “gravity feed” system to cool reactors in the event of an emergency.

In one design, for example, the relatively new Westinghouse AP1000, water is suspended over the reactor housing. If pressure within the system drops, this allows the water to fall into the reactor area, submerging it in enough water to keep it cool.

While passive systems could be better in the event of electrical failures, they might not always be the safest systems. Kadak says that in an active system, it’s easier to ensure that coolant gets exactly where it needs to be—it’s simply pumped to the right location. Designing passive systems, on the other hand, requires complex models of how fluids will behave in a system that could be rendered incorrect if the system is damaged.

Kadak says that even more advanced reactor designs could overcome these issues. Some advanced reactors use molten metals to cool the reactor—the mass of these systems is enough to provide cooling in an emergency, he says, although if the molten metal were displaced by an earthquake, that could be a problem of its own. He’s devoted much of his career to another advanced alternative, the “pebble bed reactor,” which is designed to make it impossible for the fuel to get hot enough for a meltdown. The tradeoff is that the reactors, which are the same size as conventional ones, produce only about 1/10th as much power.

Kadak says that overall, even today’s reactor designs are generally safe. “We shouldn’t lose sight of the enormity of the earthquake and flood,” he says. “Nuclear power plants are designed for earthquakes and hurricanes, and in some places tsunamis. But these were unbelievably large.”

25 comments. Share your thoughts »

Credit: Digital Globe

Tagged: Energy, energy, nuclear, Japan, nuclear energy, earthquake, reactor fuel

Reprints and Permissions | Send feedback to the editor

From the Archives


Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me