Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo

 

Unsupported browser: Your browser does not meet modern web standards. See how it scores »

{ action.text }

A new surgical tool covered in stretchable sensors could reduce the time required to map electrical problems in the heart from over an hour to just a few minutes. The tool could be one of the first commercial applications for an innovative method for making dense arrays of stretchable, biocompatible electronics using high-performance materials including silicon. The tool, which senses temperature and electrical activity, could also lead to better monitoring during other types of surgery, potentially reducing the rate of complications.

Putting such devices on a stretchy surface is not possible using conventional electronics manufacturing. The stretchable silicon electronics used were developed by John Rogers, professor of materials science and engineering at the University of Illinois at Urbana-Champagne and a cofounder of MC10, a startup that is commercializing the technology. Researchers at MC10 are leading the development of the catheters and are also developing the electronics for other applications.

The surgical tool has performed well in animal tests designed to mimic a disorder called atrial fibrillation. This results from electrical problems in the heart tissue around the pulmonary vein, which carries blood back to the heart from the lungs. The condition, in which the upper chambers of the heart quiver instead of beating, is seen in over 2 million Americans, and in 15 percent of all people who have strokes. Atrial fibrillation is difficult to control with drugs, and the drugs that are used, including blood thinners, can have serious side effects. But the problem can be corrected with surgery. First, surgeons map the source of the electrical problem with a probe, and then they knock out the electrical trouble spots by heating and damaging those tissues.

The new multifunctional surgical tools could help speed this surgery, lowering the risk that something will go wrong.

Mapping electrical activity in heart tissue is conventionally done using a tool called a balloon catheter—a soft, inflatable probe fitted with one or two electrodes. The catheter is moved back and forth over the damaged tissue, taking thousands of electrical readings one at a time, and these become the basis for a map of electrical activity. But the process is time-consuming—in the case of some fibrillations it takes over an hour.

1 comment. Share your thoughts »

Credit: Nature

Tagged: Computing, Materials, materials, startups, flexible electronics, heart surgery, implantable electronics, stretchable silicon

Reprints and Permissions | Send feedback to the editor

From the Archives

Close

Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me