Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo

 

Unsupported browser: Your browser does not meet modern web standards. See how it scores »

The molecules normally emit visible red light, but when the rubber surface is stretched or compressed, it alters the color of light that is emitted. By stretching the rubber 2.2 percent of its length, the researchers could change the color of light. A light detector would notice a difference of about five nanometers between the starting and ending wavelengths of emitted light. This could correlate to tiny changes in strain within a structure, explains Wagner. “It’s highly sensitive, and that’s the advantage,” he says. “In many cases, structural or civil engineers would like to see incipient failure, not a visible crack; and they’d like to have a sensor capable of that sensitive measurement.”

Optically pumping the stretchable laser skin could be an advantage for the system. It could reduce the cost of installation, because it wouldn’t require wires. It would also mean that an engineer could stand at a distance from a structure, shine ultraviolet light onto the surface of the sensing skin to detect tiny changes in strain.

The concept could “fill a critical niche in structural health,” says Lynch. “The approach seems novel, and it’s interesting what kind of results the technology could yield when deployed in the real world.” Lynch is developing large-area sensing skins that rely on layers of carbon nanotubes and other organic molecules to sense strain, cracking, and corrosion, among other defects.

Wagner says that his prototype still needs to be fine-tuned. While the PDMS sheets can stretch a great distance, the organic layers sheer off when they’re extended too far. Fixing this problem will likely come down to testing different types of light-emitting molecules and finding a way to better affix them to the PDMS. “We know the experiments to do,” he says. “We just haven’t found the magic recipe yet.”

1 comment. Share your thoughts »

Credit: Princeton University Macroelectronics Group

Tagged: Computing, sensor, lasers, stretchable electronics

Reprints and Permissions | Send feedback to the editor

From the Archives

Close

Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me