Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo

 

Unsupported browser: Your browser does not meet modern web standards. See how it scores »

Researchers at Princeton University have built a new type of sensor that could help engineers quickly assess the health of a building or bridge. The sensor is an organic laser, deposited on a sheet of rubber: when it’s stretched—by the formation of a crack, for instance—the color of light it emits changes.

“The idea came from the notion that perhaps it’s possible to cover large structures like bridges with a skin that you can use to detect deformation of the structure from a distance,” says Sigurd Wagner, professor of electrical engineering at Princeton University, who developed the stretchable laser sensor with and Patrick Görrn, a researcher at Princeton. The work was published last month in Advanced Materials.

For more than a decade, researchers have explored ways to make dense arrays of sensors capable of covering large areas. Sensing skins are especially intriguing to civil engineers, who know the importance of detecting damage in infrastructure so that disasters like the 2007 collapse of a bridge in Minneapolis can be averted. “There’s really a critical need to develop better sensors that can be applied to infrastructure systems,” says Jerome Lynch, professor of civil and environmental engineering at the University of Michigan.

Traditional strain sensors simply measure stress along a particular line. One such sensor is a wire that changes resistivity when it’s under strain. Another type is an optical fiber that indicates strain when light injected at one end is scattered by a defect in the structure. “But the problem is if the damage occurs between the sensors—it’s difficult to detect,” says Branko Glisic, a professor of civil and environmental engineering at Princeton who was not directly involved with the project.

A stretchable laser could solve this problem by covering more area than wires or fiber optics. To make the device, a sheet of stretchable material called polydimethylsiloxane (PDMS) was specially prepared so that it had a wavy surface. Next, the researchers spun a liquid mixture of organic molecules onto the wavy surface. When an ultraviolet laser is shone on the organic layer (a method of powering a laser called optical pumping), it stimulates the emission of photons from the organic molecules. Lasing occurs because the wavy surface acts as a diffraction grating, reflecting the light between the waves, effectively amplifying the signal.

1 comment. Share your thoughts »

Credit: Princeton University Macroelectronics Group

Tagged: Computing, sensor, lasers, stretchable electronics

Reprints and Permissions | Send feedback to the editor

From the Archives

Close

Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me