Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo

 

Unsupported browser: Your browser does not meet modern web standards. See how it scores »

Dye-sensitized thin-film solar cells are cheaper to make than conventional silicon cells, but they’re still relatively inefficient.

Now researchers at Stanford University have used a specially designed metal reflector to boost the efficiency of solid electrolyte dye-sensitized solar cells by as much as 20 percent. The reflector is a thin silver film with an array of nanoscale bumps. The researchers use the film to coat the cells’ back surface; the film helps trap more light inside the cells. “We get about 5 to 20 percent more absorption depending on the dye,” says Michael McGehee, director of the Center for Advanced Molecular Photovoltaics at Stanford. McGehee led the research, which was  published online this week in the journal Advanced Energy Materials.

Dye-sensitized thin-film cells with a light-to-electricity conversion efficiency of around 11 percent recently made their commercial debut. However, they use liquid electrolytes that are volatile and could leak. Cells with solid electrolytes have only shown efficiencies of about 5 percent.

“They took the best solid-state dye cell they could, and made it better,” says David Ginger, a chemistry professor at the University of Washington, of the Stanford researchers. “Even better, they did it using technology and methods that could potentially be used in a production environment.”

Dye-based solar cells are composed of semiconductor nanocrystals (typically titanium dioxide, or titania) that are coated with dye molecules and sandwiched—along with an electrolyte—between glass or plastic sheets. The dye absorbs light and creates electrons and positively charged holes. The crystals transfer the electrons to one electrode to produce an electrical current, while the electrolyte carries the holes to the other electrode.

Solid electrolytes are not as efficient as liquid ones, though, and the electrons and holes recombine more easily. To prevent that, the titania layer is very thin—typically two micrometers. But the thinner the cells, the more quickly light passes through them without getting absorbed. Research efforts to improve the efficiency of these cells have typically focused on developing stronger dyes and new types of nanocrystals. But McGehee and his colleagues used plasmonic reflectors to improve their cell’s efficiency.

Plasmons are the oscillations of electrons at a metal surface when they are excited by light. By controlling the shape of the surface, you can control the type of plasmons created, which in turn influences how light interacts with the material.

Gain the insight you need on energy at EmTech MIT.

Register today

4 comments. Share your thoughts »

Credit: Michael McGehee, Stanford University

Tagged: Energy, energy, renewable energy, solar cells, thin-film solar cells, dye-sensitized thin-film solar cells, silicon solar cell

Reprints and Permissions | Send feedback to the editor

From the Archives

Close

Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me
×

A Place of Inspiration

Understand the technologies that are changing business and driving the new global economy.

September 23-25, 2014
Register »