Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo

 

Unsupported browser: Your browser does not meet modern web standards. See how it scores »

The Internet of things is a vision of a world where many more devices can, and will, be connected to the network. Many of us are already familiar with ecosystems of interconnected devices—computers, printers, mobile phones, and even TV sets—that each have their own identity and yet all exist as individual nodes of a wider system.

The Internet of things takes that concept several steps further: it suggests that almost any object—potentially every manufactured object on the planet—could one day have its place in this system. Advocates foresee a world where everything from your clothes to your car to your cup of coffee can be uniquely labeled as a node on the Internet. 

Why? Because with the Internet of things, if you lose your keys, the network tells you where they are. Your running shoes tell you when they’ve gone past their optimum mileage the second it happens. Businesses would be able to tell where every product they sell is located. Farms could use irrigation equipment that “talks” to soil sensors to determine how much water is required in each part of a field. 

It might sound extravagant, but the shift toward such a world has already begun.

Because of rapid mobile adoption and the spread of technologies such as radio-frequency identification, Ericsson Labs predicts that 50 billion connections will be required by 2020—tough to achieve under IPv4 but well within the reach of IPv6.

But even with the looming Internet of things, IPv4 may still stick around. Even though all IPv4 addresses have been allocated, they aren’t all active. We could see secondary markets for address space develop, particularly among those businesses and universities which—typically by accident—own vast chunks of IPv4 space that go largely unused.

There are other ways to keep IPv4 viable for some time. A technical solution such as network address translation, for example, takes a single public IP address and splits it among many private addresses— allowing devices inside, say, a home or office network to connect to the Internet without their own unique IP addresses.

So even if IPv6 remains out of favor with ISPs, the Internet of things may still arrive. That will please its fans, but should not calm their fears entirely. After all, says Crowcroft, choosing inelegant solutions today will come with costs further down the line. “There are lots of workarounds, and we can do more of that,” he says. “The big problem is that when things go wrong, debugging the Internet is a bitch.”

9 comments. Share your thoughts »

Tagged: Web, Internet, protocols, IP address

Reprints and Permissions | Send feedback to the editor

From the Archives

Close

Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me