Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo


Unsupported browser: Your browser does not meet modern web standards. See how it scores »

{ action.text }

Honda has moved closer to bringing its first jet to market—one that uses 20 percent less fuel than similar-sized planes while also flying faster. A prototype of Honda’s light jet, which will seat five to six passengers and is scheduled to go on sale next year, made its first flight last month.

The airplane makes extensive use of composite materials—a combination of carbon fiber and resins that reduces a plane’s weight. So far the materials are rare in business jets, though they’ve become common in small, home-built kit planes. They are also beginning to see more use by big jet makers such as Airbus and Boeing, which are seeking ways to reduce fuel consumption.

The composites allow Honda not only to decrease the weight of its plane but also to give it a unique shape that reduces drag. The novel design of the plane also involves mounting the engines on the top of the wing, rather than underneath it or on the fuselage. This helps decrease drag at high speeds, says Michimasa Fujino, the president and CEO of Honda Aircraft Company, a subsidiary of Honda Motor Company.

The shape of the fuselage and wings allows air to move more smoothly over the skin of the plane. This smooth flow of air is called natural laminar flow, and it’s usually limited to small parts of the surface of a business jet. The air over the rest of the surface is turbulent, creating drag. Honda sought to extend how far the laminar flow extends along the fuselage and the wing. The shape of its plane features subtle bulges on the nose of the plane and on the wings that create “a very complex pressure distribution,” Fujino says. As air moves over these bulges, it first accelerates, then decelerates, then accelerates again, he says, creating areas of high and low pressure. The changes in pressure essentially “suck the laminar flow toward the end of the wing,” he says.

Composites are key for achieving laminar flow, says Mark Drela, professor of aeronautics and astronautics at MIT, because they allow for a smoother, more even surface than is possible with riveted sheets of aluminum. And Fujino points out that they’re important for creating the precise shapes needed for the design.

4 comments. Share your thoughts »

Credit: Honda

Tagged: Energy, material, aircraft, composite materials, airplane, Honda

Reprints and Permissions | Send feedback to the editor

From the Archives


Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me