Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo

 

Unsupported browser: Your browser does not meet modern web standards. See how it scores »

{ action.text }

MC10’s silicon-printing method, originally developed by John Rogers at the University of Illinois, works with a variety of substrates, including silk. Silicon-silk electronics—a facet of one of our Ten Emerging Technologies of 2010—should make possible smarter, more biocompatible medical implants (TR10: Implantable Electronics and Brain Interfaces Made of Silk). The implantable-electronics work uses silkworm silk as a tissue-friendly substrate. Spider silk is lightweight and tougher than steel, but materials scientists haven’t been able to get it in large enough quantities to realize its potential for industrial applications. Two 2010 advances in making transgenic silk-producing creatures, E. coli and silkworms, might change that (Making Spider Strength Materials and Transgenic Worms Make Tough Fibers).

Displays of the Future

While gadget hounds delighted in the new iPad, materials-science geeks lamented the continuing dominance of power-hungry liquid-crystal displays that useheavy pieces of glass. A lightweight wrist-mounted display prototyped for the U.S. Army employed new, more efficient organic light-emitting diodes (Thin Displays as Wristbands). And two companies making quantum dots partnered with display manufacturer LG to improve the efficiency of LCD backlights (Colorful Quantum-Dot Displays Coming to Market) and to make a new type of display, a quantum-dot light-emitting diode (Quantum Dot Displays Start to Shine).

New materials also pushed displays beyond conventional eye-strain-inducing 3-D that requires viewers to wear special glasses. Researchers at the University of Arizona and Nitto Denko Technical used a blend of electrically responsive light-scattering polymers to make a holographic videoconferencing system (A Step toward Holographic Videoconferencing). The holographic display refreshes every two seconds; with further improvements, it will attain video rates.

Rare Earths on the Radar

The year found many twisting their mouths around names like praseodymium and neodymium for the first time as the lanthanoid row of the periodic table came into the news. Many high-tech and clean-tech devices, such as lightweight permanent magnets for computer hard drives and wind turbines, require rare-earth metals, and demand for them is growing. China currently supplies 95 percent of the world’s rare earths, and some worry about future supplies of these critical raw materials. Companies including GE and Hitachi are working on alternative technologies that require smaller quantities of rare-earth elements or none at all (China’s Rare-Earth Monopoly). Meanwhile, the U.S. company Molycorp and the Australian company Lynas detailed plans for rare-earth mining operations in Mountain Pass, California, and Perth (Can the U.S. Rare-Earth Industry Rebound?).

0 comments about this story. Start the discussion »

Credit: Daniel Frisbie

Tagged: Computing, Materials, graphene, chips, material, rare-earth metals

Reprints and Permissions | Send feedback to the editor

From the Archives

Close

Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me