Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo


Unsupported browser: Your browser does not meet modern web standards. See how it scores »

{ action.text }

In the last three years, the number of human genomes that have been sequenced (their DNA read letter by letter) has jumped from a handful to hundreds, with thousands more in progress. But all of those genome readings lack some crucial information. A person inherits two copies of each chromosome, one maternally and one paternally. Existing sequencing methods do not indicate whether genetic variations that lie close to each other on the genomic map were inherited from the same parent, and therefore come from the same chromosome, or if some lie on the maternal chromosome and some on the paternal one. Knowing this has a variety of uses, from sequencing fetal DNA to more easily detecting the genes responsible for different diseases to better tracking human evolution.

Now two teams have devised ways to determine these groupings—known as the haplotype—in an individual. Stephen Quake and collaborators at Stanford University developed a way to physically separate the chromosome pairs and sequence each strand of DNA individually. Jay Shendure and colleagues at the University of Washington in Seattle sequenced DNA from single chromosomes in specially selected pools and used this information to piece together the genome. Both projects were published this week in Nature Biotechnology.

“It was a real technical flaw in the genomes [sequences] that have been published to date,” says Quake, a bioengineer at Stanford who was one of Technology Review’s top innovators under 35 in 2002. “Every genome we are going to do from now on going will be recorded with the haplotype.”

Quake’s team capitalized on microfluidics technology that they have developed for separating and analyzing single cells. First, the researchers trapped single cells during a specific phase of the cell cycle in which the two copies of its chromosomes are split apart. Then they burst open the cell, randomly partitioned chromosomes into different chambers on a microfluidics chip, and copied, or amplified, and analyzed the DNA in each chamber.

Shendure, a TR35 winner in 2006, and his team amplified 40,000 letter stretches of DNA randomly sampled from individual chromosomes. Because each piece of DNA comes from one half of a chromosome pair, researchers know that all the genetic variants within its sequence lie on the same chromosome.

Shendure and Quake say that having haplotype information will have an enormous impact on human genetics, helping not only to diagnose and understand the genetic basis of some diseases but also to track the evolution of our species from primate ancestors.

If someone has two disease-linked mutations within a single gene, it’s difficult to determine with current genome sequencing methods if there is one genetic mistake on the maternal copy and one on the paternal copy or if both variations lie within the same copy of the gene. In the former case, the person has two defective genes, which are likely to cause health problems. In the latter, the person has one good copy of the gene and one bad copy. In many cases, having the good copy can compensate for the defective one.

0 comments about this story. Start the discussion »

Credits: Christina Fan

Tagged: Biomedicine, genome, sequencing

Reprints and Permissions | Send feedback to the editor

From the Archives


Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me