Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo

 

Unsupported browser: Your browser does not meet modern web standards. See how it scores »

Oasys Water, a company that has been developing a novel, inexpensive desalination technology, showed off a new development facility in Boston this week. The company, which has been demonstrating commercial-scale components of its system in recent months, plans to begin testing a complete system early next year and to start selling the systems by the end of 2011.

Currently, desalination is done mainly in one of two ways: water is either heated until it evaporates (called a thermal process) or forced through a membrane that allows water molecules but not salt ions to pass (known as reverse osmosis). Oasys’s method uses a combination of ordinary (or forward) osmosis and heat to turn sea water into drinking water.

On one side of a membrane is sea water; on the other is a solution containing high concentrations of carbon dioxide and ammonia. Water naturally moves toward this more concentrated “draw” solution, and the membrane blocks salt and other impurities as it does so. The resulting mixture is then heated, causing the carbon dioxide and ammonia to evaporate. Fresh water is left behind, and the ammonia and carbon dioxide are captured and reused.

Oasys says the technology could make desalination economically attractive not only in arid regions where there are no alternatives to desalination, but also in places where fresh water must be transported long distances. In California, for example, a massive aqueduct system now transports water from north to south.

“The cost will be low enough to make aqueduct and dam projects look expensive in comparison,” says Oasys cofounder and chief technology officer Robert McGinnis, who invented the company’s core technology. The process could also require substantially less power than other desalination options. “The fuel consumption and carbon emissions will be lower than those of almost any other water source besides a local lake or aquifer,” he says.

The key to making the process work was developing a draw solution with easy-to-remove solutes, something that was done at a lab at Yale University. “Others have tried to develop other solutes for desalination,” McGinnis says, “but they haven’t been successful so far.”

The next-biggest technical challenge has been developing the membrane. The membranes used in reverse osmosis are unsuitable for this process because they work best at high pressures. Forward osmosis doesn’t use high pressures, so water moves through these membranes too slowly for the system to be practical. McGinnis and colleagues reëngineered the membranes, reducing the thickness of the supporting material and increasing its porosity without changing a very thin layer that blocks salts. These changes enabled water to pass through 25 times faster, McGinnis says.

Gain the insight you need on energy at EmTech MIT.

Register today

10 comments. Share your thoughts »

Credit: Robert McGinnis

Tagged: Energy, energy, water, water desalination

Reprints and Permissions | Send feedback to the editor

From the Archives

Close

Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me
×

A Place of Inspiration

Understand the technologies that are changing business and driving the new global economy.

September 23-25, 2014
Register »