Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo


Unsupported browser: Your browser does not meet modern web standards. See how it scores »

{ action.text }

Rothberg likens the evolution of sequencing technology to that of the computer industry. “The original computers were expensive; [they were] hard to build, ship, and set up; and they required a special environment to operate.” DNA sequencing was similarly once limited to the realm of large sequencing centers, but new technologies on the market over the last five years have greatly expanded its purview. These machines brought down the cost of sequencing dramatically, largely by reading millions of DNA sequencing reactions in parallel.

Within this scheme, Rothberg equates Ion Torrent’s machines to personal computers. Thousands of labs across the globe will now have access to sequencing machines that can fit on a standard lab bench, but as Harvard geneticist George Church points out, the machines are still out of reach for the average consumer. Furthermore, while many labs will have the capacity to buy a $50,000 sequencer, it’s not yet clear that they will. “Lots of labs are outsourcing these days,” says Church. “But I do think a lot of people want their own device. They don’t want to be in queue. If they have a sample, they want an answer immediately.”

It’s also difficult to predict how Ion Torrent will compete with other high-profile companies with new sequencing technologies on the market, most notably Pacific Biosciences. That company raised $200 million through an initial public offering in October of this year.

John Iafrate and Long Le, pathologists at Massachusetts General Hospital, plan to put the diagnostic potential of Ion Torrent’s technology to the test. Their proposal to use the machine to analyze cancer-linked genes in tumor cells won the pair a free sequencer in a competition sponsored by the company last June. MGH currently screens so-called hotspots—regions of the genome known to harbor many cancer-linked mutations—in some incoming cancer patients. “This would allow us to move from the hotspot approach to cast a wider net; there are probably about 200 genes we are interested in,” says Iafrate. “We want to understand every patient’s cancer comprehensively enough [for them] to be given drugs or directed into the appropriate clinical trials.”

He adds that both the speed and the cost of the machine will make it attractive to clinical genetics labs. “In a clinical setting, it’s very important to turn around tests quickly,” he says. “Outside of genome centers, it’s hard to get capital funding for [sequencing instruments], so reducing the cost to $50,000 makes it very attractive. All of those factors make entry into the clinical arena a tractable problem.”

5 comments. Share your thoughts »

Credit: Ion Torrent

Tagged: Biomedicine, sequencing, semiconductor, DNA sequenced, Ion Torrent

Reprints and Permissions | Send feedback to the editor

From the Archives


Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me