Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo


Unsupported browser: Your browser does not meet modern web standards. See how it scores »

{ action.text }

GM and Nissan have also switched from a cylindrical shape for the batteries (the battery cells inside typical laptop packs look like large AA batteries) to a flat rectangular shape that saves space and also allows heat to escape better. Overheating can damage the batteries, decreasing their ability to store charge, and, in some cases, can lead to a phenomenon called thermal runaway, when elevated temperatures result in chemical reactions that lead to yet more heat, eventually resulting in a fire.

But major differences emerge when you look at how GM and Nissan designed their battery packs—the collection of battery cells, electronics, and temperature controls that make up the complete battery. The biggest difference is how the companies choose to control the temperature of the packs. Nissan has opted for a simple design, using a fan to cool its batteries. It says that the flat shape of the battery cells makes additional cooling unnecessary. GM’s design is more complex. A liquid coolant carries fluid past the surface of each cell in the pack and to a small radiator outside of the pack.

Liquid cooling systems can carry heat away from battery cells more quickly than air cooling. Additionally, “liquid cooling is much more compact,” says Bill Wallace, GM’s director of global battery systems. “You can move much more heat, and move it much more uniformly.”

Wallace says liquid cooling was chosen to ensure that all of the cells in a pack are within two °C of one another. Along with preventing overcharging, “temperature control is the most important knob you can turn in terms of improving battery life,” he says.

Liquid cooling is the approach chosen by Tesla Motors, which makes an electric sports car using lithium-ion battery cells that were originally designed for other applications. The cooling method ensures that even if some cells overheat and catch fire, the rest wouldn’t. In a recent earnings call with investors, Elon Musk, the CEO of Tesla Motors, criticized the Nissan design, saying it could cause temperatures to be “all over the place,” which could degrade battery performance.

Because cold weather can limit the amount of charge a battery pack can store, and cause damage to the battery, GM’s pack also has a 1,800-watt resistive heater to keep the battery pack from getting too cold. Nissan recommends a cold weather package that includes a battery heater, but this doesn’t come as standard. And the option is not available for the first Leafs to come off of the assembly line, and it cannot be added to a car later. If the Leaf pack gets too cold, or too hot, it enters a limited power mode, which restricts acceleration and top speed.

The Volt is also engineered to hold a certain amount of charge in reserve when the car is new to help preserve battery life. As the battery ages, some of this reserve capacity will be released, which will help the car maintain its electric range over time. GM expects the capacity of the battery to fade between 10 and 30 percent during the life of the car (about eight to 10 years). Nissan has not said if it will use a similar approach, but it has said that the Leaf’s battery capacity will fade 30 percent in 10 years. It has also noted that exposure to hot temperatures could decrease battery capacity faster.

10 comments. Share your thoughts »

Credit: GM

Tagged: Energy, energy, batteries, electric cars, GM, Volt, Nissan, Nissan Leaf

Reprints and Permissions | Send feedback to the editor

From the Archives


Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me