Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo

 

Unsupported browser: Your browser does not meet modern web standards. See how it scores »

The intrinsic physical properties of QLEDs, which can be made of cadmium selenide as well as cadmium-free semiconductors, make them a compelling replacement for OLEDs.

While some OLED displays still require color filters to produce pure colors, QLEDS emit pure, bright color from the start, Coe-Sullivan says. Additionally, QLEDs are fundamentally superior to OLEDs in the way that they convert electrons to photons, which means that a quantum-dot display operates at lower voltages.

“If they can make this electroluminescence technology work, then we think that’s a good thing for the industry,” says Jason Hartlove, president of Nanosys, which is also developing electroluminescent quantum dots. “My personal view, which goes against what some folks in the industry are betting on, is that OLED displays will never really gain full traction,” he says. “Then there will be a new tech that will emerge, and we hope that’ll be emissive quantum dots.”

“QLEDs are still in the early stage,” says Jennifer Colegrove, analyst at DisplaySearch, a market research firm. “I do think it has a very promising future, and I hope we can see a full color demo by next year.”

Coe-Sullivan is hesitant to provide a solid time line for QLED manufacturing. Since QD Vision was founded, the company has made strides, thanks to tweaks in chemistry and engineering, that have improved the length of time that electroluminescent quantum dots can shine. But currently, the best QLEDs have a lifetime of 10,000 hours—not long enough for a large display. Other challenges for display developers, says Coe-Sullivan, include ensuring uniform color performance across the spectrum and making sure the other parts of a display do not require too much power.

“QD Vision has made an awful lot of progress,” Coe-Sullivan says. “We’re just getting to that point where you can see commercialization on the horizon.”

3 comments. Share your thoughts »

Credit: QD Vision

Tagged: Computing, displays, quantum dots, OLEDs, screens, pixels

Reprints and Permissions | Send feedback to the editor

From the Archives

Close

Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me