Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo


Unsupported browser: Your browser does not meet modern web standards. See how it scores »

{ action.text }

Using knowledge of the vibrational frequency of a specific protein in red blood cells, the team set one laser beam at a high frequency and the other at a lower frequency so that the difference between the two frequencies equaled the vibrational frequency of the protein. Through a system of mirrors, they trained the two laser beams through a small aperture and onto a mouse. The combination of the two laser beams excited the protein molecules in the imaging area and caused them all to vibrate, or oscillate, in synchrony. Xie likens the phenomenon to resetting a group of pendulums.

“If you have lots of pendulums, each one oscillates at the same frequency, but they are randomly distributed in their phase,” says Xie. “That’s what happens in conventional Raman spectroscopy. But here, we forced all the pendulums to go left and right at the same time, so in the end we have a much stronger signal.”

The group developed a custom detector to pick up the molecular signal, and found that the signal was thousands of times stronger than in conventional Raman spectroscopy. From the signal, the researchers obtained fast, detailed images of red blood cells moving through a mouse’s skin capillaries. Using the same technology, they also observed the behavior of trans-retinol, a common skin-care compound, as it was absorbed into a mouse’s ear.

“This work should open new opportunities in studying chemical composition changes and drug transport,” says Shuming Nie, professor of biomedical engineering at Emory University. “This technique is dramatically more sensitive and [has] better spatial resolution, but it is still limited by very small penetration depths.”

So far, Xie and his colleagues have only been able to image at a depth of 100 microns, mostly due to the limitations of laser-based techniques. Xie says a solution may be to pair the technique with an imaging system like MRI, which can produce images deeper in the body, though with less clarity.

The team is working with mechanical engineer Eric Seibel at the University of Washington to design an endoscope that can house the two-laser system, in order to thread it through the body and create detailed images of tissues and organs. With such a capability, says Ji-Xin Cheng, associate professor of biomedical engineering at Purdue University, doctors may be able to identify other diseases that manifest on the surface of organs other than skin.

“Some cancers start in the epithelial layer, or the surface of tissues, like colon cancer,” says Cheng. “Diagnosing such cancers could be a good application for a system like this.”

2 comments. Share your thoughts »

Credit: Brian Saar & Christian Freudiger / Harvard University
Video by Sunney Xie/Harvard University

Tagged: Biomedicine, imaging, MRI, molecular imaging, PET

Reprints and Permissions | Send feedback to the editor

From the Archives


Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me