Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo

 

Unsupported browser: Your browser does not meet modern web standards. See how it scores »

{ action.text }

As millions of U.S. travelers get ready for the busiest flying day of the year, scientists still can’t agree over whether the dose of radiation delivered by so-called backscatter machines is significantly higher than the government says. This is despite months of public debate between the White House, the U.S. Food and Drug Administration, and independent scientists.

Full-body scanners have been installed at many U.S. airports. The machines use either low-energy, millimeter wavelength radiation, which is harmless, or X-rays, which can potentially be hazardous. X-rays can ionize atoms or molecules, which can lead to cancerous changes in cells. Even if the government has significantly underestimated the dose of radiation delivered by an X-ray scanner, it is likely to be relatively small.

The low-energy X-rays emitted by the second type of scanner—also known as a backscatter machine—can pass through clothing but not skin or metal. This makes it possible to spot concealed weapons or explosives, although it also reveals a person, essentially, in the nude. To address this, the U.S. Transportation Security Agency is working on software that converts an image of person into a stick figure, or a blob, without obscuring objects that might pose a security threat. Passengers can also opt to be frisked instead of scanned.

In April, four scientists at the University of California, San Francisco, wrote a public letter to the White House warning that the government may have underestimated the dosage of ionizing radiation delivered to a person’s skin from a backscatter machine by one or two orders of magnitude. The scientists, who have expertise in biochemistry, biophysics, oncology, and X-ray crystallography, pointed out that the government’s estimate was based on radiation exposure for the entire body. During scanning, the majority of radiation will be focused on the surface of the body, meaning a more concentrated dose of radiation is delivered to the skin.

The Health Physics Society has worked with the FDA to determine the safety of backscatter machines. Spokeswoman Kelly Classic says a dummy made of acrylic is used to measure exposure to ionizing radiation. Sensors attached to the surface of the dummy determine the dose of radiation a person would get from the machine.

The FDA asserts that its method is correct. “This is how we measure the output of X-ray machines and how we’ve done it for the past 50 years,” says Classic.

5 comments. Share your thoughts »

Tagged: Computing, security, x-ray, terrorism, scanners, airplanes

Reprints and Permissions | Send feedback to the editor

From the Archives

Close

Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me