Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo


Unsupported browser: Your browser does not meet modern web standards. See how it scores »

{ action.text }

Scientists have built a new type of prosthetic retina that could someday restore detailed sight to the millions of people who’ve lost their vision to retinal disease.

Neuroscientist Sheila Nirenberg, of Weill Cornell Medical College in New York, and postdoctoral student Chethan Pandarinath have enabled blind mice to see nearly normal images of everything from human and animal faces to complex panoramas of Central Park.

Artificial retinas already exist. But they require surgery to implant an array of electrodes deep into the eye. The electrodes stimulate cells that transmit information to the brain, and must be powered by an external battery. They are capable of restoring crude vision, allowing patients to pick up only major contrasts and edges, such as a light object against a dark background. But Nirenberg’s research, which was presented this week at the Society for Neuroscience meeting in San Diego, enables still and moving images to be conveyed more cleanly and rapidly than ever before possible. And the method doesn’t require surgery.

In mammals’ eyes, a set of cells in the retina detects light, and then a separate layer of cells, called ganglion cells, relays that information to the brain. Because macular degeneration and other retinal diseases cause the light-detecting cells to die but leave the ganglion cells intact, researchers have been trying for 50 years to decipher their code—the patterns by which the ganglion cells fire—so as to capitalize on the eye’s natural circuitry. Nirenberg has now nailed that, or at least a close approximation. After 10 years of work, she knows the relationship between what we see and how that translates into ganglion-cell firing patterns.

“It really is a triumph for our field,” says Jonathan Victor, a neuroscientist at Weill Cornell Medical College who was not involved in the research. “In retrospect, it might seem that it was obvious that you need to not just send signals to the brain (as current artificial retinas do) but also figure out how the retina transforms light into the particular signals that it sends. But somehow, nobody ever thought of it that way.”

After deciphering the retina’s code, Nirenberg wanted to deliver it to the brain in a way that was more precise than was possible using existing electrode technology. For this, she and her colleagues turned to optogenetics, a recently developed technique that infuses neurons with light-sensitive proteins from blue-green algae, causing them to fire when exposed to light.

1 comment. Share your thoughts »

Credit: Sheila Nirenberg

Tagged: Biomedicine, implant, blindness, biotechnology, retina, eye disease, artificial retina

Reprints and Permissions | Send feedback to the editor

From the Archives


Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me