Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo

 

Unsupported browser: Your browser does not meet modern web standards. See how it scores »

Growing living tissue and organs in the lab would be a life-saving trick. But replicating the complexity of an organ, by growing different types of cells in precisely the right arrangement—muscle held together with connective tissue and threaded with blood vessels, for example—is currently impossible. Researchers at MIT have taken a step toward this goal by coming up with a way to make “building blocks” containing different kinds of tissue that can be put together.

Embryonic stem cells can turn into virtually any type of cell in the body. But controlling this process, known as differentiation, is tricky. If embryonic stem cells are left to grow in a tissue-culture dish, they will differentiate more or less at random, into a mixture of different types of cells.

The MIT group, led by Ali Khademhosseini, an assistant professor in the Harvard-MIT division of Health Sciences and Technology and a recipient of a TR35 award in 2007, put embryonic stem cells into “building blocks” containing gel that encouraged the cells to turn into certain types of cell. These building blocks can then be put together, using techniques developed previously by Khademhosseini, to make more complex structures. The gel degrades and disappears as the tissue grows. Eventually, the group hopes to make cardiac tissue by stacking blocks containing cells that have turned into muscle next to blocks containing blood vessels, and so forth.

The researchers expose clusters of stem cells called embryoid bodies to a physical environment that mimics some of the cues the cells experience during embryonic development. “In an attempt to recreate that polarity, we applied microfabrication technologies to stem-cell engineering,” says Khademhosseini.

The team first puts embryoid bodies into microscale wells, which causes the cells to clump together to form spheres. Next they pour a light-sensitive hydrogel solution over the top of the cells. When this solution is exposed to light, it hardens, leaving behind a sphere of cells, half naked, half encased in a cube of gel. The process is repeated to encase the other half in a second type of gel. The result is a hydrogel block, half gelatin, half polyethylene glycol, with a sphere of embryonic stem cells inside.

8 comments. Share your thoughts »

Credit: Hao Qi

Tagged: Biomedicine, Materials, stem cells, material, tissue, organs

Reprints and Permissions | Send feedback to the editor

From the Archives

Close

Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me