Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo


Unsupported browser: Your browser does not meet modern web standards. See how it scores »

{ action.text }

Scientists have tracked the flow of nanoparticles from the lungs to the bloodstream for the first time. The work could lead to the development of new drugs and help researchers understand how pollution can cause respiratory problems.

Researchers from Beth Israel Deaconess Medical Center and the Harvard School of Public Health injected fluorescent nanoparticles into rats’ lungs and used near-infrared imaging to watch as the particles moved through their bodies. The researchers tracked how far—and how quickly—nanoparticles of different size, shape, and surface charge were able to travel after being injected. They found that nanoparticles between six and 34 nanometers in diameter were able to get past the lung’s defenses to reach the lymph nodes and the bloodstream. This finding may provide valuable guidelines for designing nanoparticle-based drugs.

The minuscule size of nanoparticles makes them potentially useful for delivering drugs. A drug needs to get through tissue barriers and fight off the body’s attacking immune cells to deliver its therapeutic payload before exiting the body to prevent a toxic reaction. Scientists are manipulating the size, shape, and other characteristics of nanoparticles to find the right combination that will carry them effectively through the body.

“There’s a learning curve that all of us are going through,” says Steven Brody, associate professor of medicine at Washington University School of Medicine. “When we start designing nanoparticles as drug-delivery vehicles, we need to start understanding what the rules are. This starts to give us some rules.”

Akira Tsuda, principal research scientist at the Harvard School of Public Health, says the lungs can be a good entry point for drugs: they have a large, thin surface area through which drugs can cross into the rest of the body. But the lungs also have powerful defensive mechanisms, with immune cells constantly on patrol, looking for foreign molecules to destroy. So far, it’s been unclear exactly what the mechanism is that allows some particles to pass through the lungs while others are caught and destroyed. Understanding that could help researchers design more effective drugs, and it could provide a better understanding of environmental pollutants.

Tsuda teamed up with imaging expert John Frangioni of Harvard Medical School, who designed the imaging system used to track the nanoparticles. Hak Soo Choi, an instructor of medicine at Harvard Medical School, helped design a number of quantum-dot nanoparticles—tiny, semiconducting crystals—and systematically altered their size, shape, and surface charge. They attached a fluorescent probe to each nanoparticle to make it glow through the body when viewed using the near-infrared imaging device.

Pelham Plastics, a medical-device manufacturer based in New Hampshire, developed a custom-made catheter to deliver the nanoparticles into a rat lung. The catheter enabled the researchers to inject nanoparticles directly into the lung, while at the same time ventilating the lung to simulate breathing.

1 comment. Share your thoughts »

Credit: Akira Tsuda

Tagged: Biomedicine, imaging, nanoparticles, drug delivery, nanomedicine, drug, lungs

Reprints and Permissions | Send feedback to the editor

From the Archives


Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me