Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo

 

Unsupported browser: Your browser does not meet modern web standards. See how it scores »

Researchers have repaired large muscle wounds in mice by growing and implanting “microthreads” coated with human muscle cells. The microthreads—made out of the same material that triggers the formation of blood clots—seem to help the cells grow in the proper orientation, which is vital for rebuilding working muscle tissue.

“We hypothesize that cells migrate along these scaffolds, which act like a conduit,” says George Pins, associate professor of bioengineering at Worcester Polytechnic Institute. Pins developed the microthread technology. The implanted cells quickly integrate into the existing muscle and reduce formation of scar tissue. “The cells grow into the space where muscle used to be, but they grow in a guided way.”

Currently, there’s not much doctors can do when someone suffers massive injury to a muscle, such as in a car crash or an explosion. Thick bands of scar tissue can form in the wound, leaving the muscle severely and permanently impaired.

Scientists are developing numerous approaches to creating replacement muscle, including growing patches of cells in a dish, injecting stem cells into damaged muscle, and implanting cell-seeded scaffolds designed to mimic native tissue. While all of these efforts show promise for certain applications, one of the major challenges has been growing enough cells in the correct structure to heal large muscle wounds.

“Muscle alignment is very important,” says Kevin “Kit” Parker, a bioengineer at Harvard University who wasn’t involved in the research. “You want the sarcomeres [the basic functional unit of muscle] to be aligned, that’s how you get muscle contractions.”

Pins and his collaborators, including Ray Page, an assistant professor at WPI’s Bioengineering Institute, aim to solve this problem by growing cells along microthreads. These hair-thin strands are made of fibrin, a protein polymer that the body uses to initiate wound healing, and a common ingredient in tissue engineering. To make the microthreads, the researchers simultaneously extrude fibrinogen, the building block of fibrin, and thrombin, an enzyme that catalyzes the soluble fibrinogen proteins into a polymer, from two small tubes. (Microthreads are also being studied for other applications, such as growing patches of heart muscle to repair damage after heart attacks.)

The threads were seeded with human muscle cells derived from tissue discarded during surgery. Prior to seeding, Page’s team grew the cells under conditions that pushed them to de-differentiate—or to become more juvenile, less specialized cells—which in turn made them better able to regenerate.

To test the technology in mice, researchers cut out about 30 percent of the animals’ tibialis anterior muscle, which lies at the front of the lower leg. They then implanted cell-seeded microthreads into the wound. (The diameter of the thread, about 50 to 100 microns, is five to 10 times the size of the cells.)

4 comments. Share your thoughts »

Credit: Tissue Engineering/Mary Ann Liebert

Tagged: Biomedicine, tissue engineering, muscle, tissue, would healing

Reprints and Permissions | Send feedback to the editor

From the Archives

Close

Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me