Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo

 

Unsupported browser: Your browser does not meet modern web standards. See how it scores »

{ action.text }

Devices that harvest wasted mechanical energy could make many new advances possible—including clothing that recharges personal electronics with body movements, or implants that tap the motion of blood or organs. But making energy-harvesting devices that are compact, flexible, and, above all, efficient remains a big challenge. Now researchers at Georgia Tech have made the first nanowire-based generators that can harvest sufficient mechanical energy to power small devices, including light-emitting diodes and a liquid-crystal display.

The generators take advantage of materials that exhibit a property called piezoelectricity. When a piezoelectric material is stressed, it can drive an electrical current (applying a current has the reverse effect, making the material flex). Piezoelectrics are already used in microphones, sensors, clocks, and other devices, but efforts to harvest biomechanical energy using them have been stymied by the fact that they are typically rigid. Piezoelectric polymers do exist, but they aren’t very efficient.

Zhong Lin Wang, who directs the Center for Nanostructure Characterization at Georgia Tech, has been working on another approach: embedding tiny piezoelectric nanowires in flexible materials. Wang was the first to demonstrate the piezoelectric effect at the nanoscale in 2005; since then he has developed increasingly sophisticated nanowire generators and used them to harvest all sorts of biomechanical energy, including the movement of a running hamster. But until recently, Wang hadn’t developed anything capable of harvesting enough power to actually run a device.

In a paper published online last week in the journal Nano Letters, Wang’s group describes using a nanogenerator containing more nanowires, over a larger area, to drive a small liquid crystal display.

To make the generator, Wang’s team dripped a solution containing zinc-oxide nanowires onto a thin metal electrode sitting on a sheet of plastic, creating several layers of the wires. They then covered the material with a polymer and topped it with an electrode. The resulting device is about 1.5 by two centimeters and, when compressed 4 percent every second, it produces about two volts, enough to drive a liquid-crystal display taken from a calculator. “We were generating 50 millivolts in the past, so this is an enhancement of about 20 times,” says Wang.

8 comments. Share your thoughts »

Credit: ACS/Nano Letters

Tagged: Energy, Materials, energy, electronics, nanowire, material, energy harvesting, piezoelectric materials

Reprints and Permissions | Send feedback to the editor

From the Archives

Close

Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me