Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo

 

Unsupported browser: Your browser does not meet modern web standards. See how it scores »

{ action.text }

The beta version of the device will be available to researchers and educators in November for around $2,000, says Picard. She cautions that heightened skin conductance is not an absolute measurement of stress, because it applies to excitement as well as distress. She says the information needs to be evaluated in context. Additionally, stress levels can be hard to accurately detect when the wearer is taking medication or has attention deficit hyperactivity disorder or attention deficit disorder.

The Q Sensor can be worn as part of a wristband or a smaller module that can slip beneath a sweatband or baseball cap to make it discreet. After field testing, Picard’s company designed it for kids: the actual sensor–which is flat and a little less than four by four centimeters–can be wiped down, and the wristband itself can go in the washer. The device also has a temperature sensor to help correct for mistakes: it can tell, for example, when a user is entering a hot room rather than having an emotional reaction. It also has a clock, a rechargeable battery that lasts a day, an external button that lets a person put an event marker on the data, and a motion sensor that tracks movement in three directions. (It’s able to distinguish, for example, when you’re sitting or plummeting down a roller coaster.) To download data, a caregiver or user can plug the sensor into a PC or Mac with a USB and use software to view, compare, and annotate the data with descriptions of events during high- and low-stress periods.

Though Picard has largely focused on using the sensor with autistic children, a team at Children’s Hospital in Boston is using the Q sensors with epileptic patients in order to understand more about the onset of seizures. And a research group at Massachusetts General Hospital plans to place the sensors on babies to monitor normal growth of the autonomic nervous system.

Monica Werner, director of the Model Asperger Program at the Ivymount School, in Rockville, Maryland, for children with learning disabilities and autism, plans to use the Q Sensor to help second-grade through 10th-grade students better moderate their emotions. She hopes it can lead to more subtle methods for reducing a child’s stress, because some kinds of intervention can compound a child’s anxiety.

“The beauty of this is, it’s a way of providing feedback and intervention that is much less socially intense,” Werner says. The program will couple the sensor information with an app on the iPod Touch that lets students report on how they feel during a class. At the end of the day, the teachers will discuss the students’ reports and physiological signs with them to figure out what went wrong and how to better solve the problems. Eventually, she hopes to make use of what she calls “the holy grail”: real-time feedback, which Affectiva plans to enable in a later version of the device.

“It’s important for those of us who are therapists and teachers,” Werner says, “to know when to get in there.”

16 comments. Share your thoughts »

Credit: Affectiva
Video by Affectiva

Tagged: Biomedicine, sensor, autism, monitoring, feedback, skin conductance, emotion

Reprints and Permissions | Send feedback to the editor

From the Archives

Close

Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me