Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo


Unsupported browser: Your browser does not meet modern web standards. See how it scores »

{ action.text }

Graphene’s potential was recognized earlier this month when those who first studied it in the lab won the 2010 Nobel Prize in Physics. But researchers are just beginning to figure out how to take advantage of the novel carbon material in electronic devices.

Researchers have already made blisteringly fast graphene transistors. Now they’ve used graphene to make a transistor that can be switched between three different modes of operation, which in conventional circuits must be performed by three separate transistors. These configurable transistors could lead to more compact chips for sending and receiving wireless signals.

Chips that use fewer transistors while maintaining all the same functions could be less expensive, use less energy, and free up room inside portable electronics like smart phones, where space is tight. The new graphene transistor is an analog device, of the type that’s used for wireless communications in Bluetooth headsets and radio-frequency identification (RFID) tags.

Graphene’s perfect structure at the atomic level provides smooth sailing for electrons, and the material conducts electrons better than any other materials do at room temperature. So far, it’s been used to make transistors that switch at about 100 gigahertz, or 100 billion times per second, 10 times faster than the best silicon transistors; it’s predicted the material could be made into transistors that are even 1,000 times faster than this. And because graphene is smooth and flat, it should be compatible with the chip-making equipment at semiconductor fabs.

But graphene offers other properties besides just being a great conductor of electrons, says Kartik Mohanram, professor of electrical and computer engineering at Rice University. It’s also possible to change the behavior of a graphene transistor on the fly, something that can’t be done with conventional silicon transistors. The transistors that make up conventional silicon logic circuits can only behave in one of two ways, called “n” for negative or “p” for positive–they either control the flow of electrons or the flow of “holes,” or positive charges. Whether a conventional transistor is p-type or n-type is determined during fabrication. But graphene is ambipolar: it can conduct both positive and negative charges.

Mohanram has designed a transistor that can be changed, and has made and tested it with Alexander Balandin, professor of materials science and engineering at the University of California, Riverside. By changing the voltage applied to a sheet of graphene using three electrical gates, they could switch the graphene between three different modes: n-type, p-type, and a mode where it conducted positive and negative charge equally. This triple-mode transistor acts as an amplifier and can be used to encode a data stream by changing the frequency and the phase of a signal. Changes in phase and frequency are used to encode data in telecommunications devices such as Bluetooth headsets and RFID tags.

3 comments. Share your thoughts »

Credit: Alexander Balandin

Tagged: Communications, Materials, nanotechnology, wireless, electronics, graphene

Reprints and Permissions | Send feedback to the editor

From the Archives


Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me