Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo


Unsupported browser: Your browser does not meet modern web standards. See how it scores »

{ action.text }

A stockbroker today has access to better up-to-the-minute information about businesses than ever before, but there’s far too much of it. Finding a key piece of information at the right moment could be the ticket to huge returns, but it’s hard for any Web user to know what to focus on.

Feed readers were supposed to save people from losing track of all the information published on the Internet and company networks, but they led to people drowning under thousands of unread posts. Twitter was supposed to solve that problem by allowing people to rely on others to tell them which posts to pay attention to, but must-read recommendations from hundreds of people overwhelmed users again.

Computer scientists at IBM Research are attempting to truly solve the information-overload problem with Social Lens, prototype software that plugs into the company’s in-house social software. It filters updates made on the corporate network–whether they’re internal posts or links to external Web content–to reveal which posts are most relevant. The user starts by choosing a topic and suggesting a few relevant links or people to create a “lens,” which is the filter that narrows down the content. Users can have as many lenses as they want. Then the system finds related content and people who tend to post on the topic. It ranks the results by considering how their source and content relate to the initial suggestions, and then it ranks the initial suggestions to determine which were most essential. This determines what’s most important to show the user.

Elizabeth Daly, one of the researchers involved with the project, says that Social Lens does several unusual things to solve common problems with filters. For one thing, it’s purposely geared to sift information by topic rather than to adapt based on what the user reads; Daly worries that the latter method of personalization often results in one interest dominating the others. The prototype also uses social information, but isn’t tied specifically to a user’s social network–Daly believes there’s an important distinction between friends and sources of useful information. On top of that, for business use, employees sometimes shift interests as they move among projects and groups. To go along with this, lenses aren’t tied to individuals and can be shared among coworkers.

Because Social Lens ranks the relevance of the information it surfaces, Daly says, it includes a slider that users can manipulate to adjust the quantity of information they receive. People can set it to give them only the most important information in an area, or, when they have more time, they can expand the view to see a larger number of posts. Daly hopes the slider will help users who are reluctant to tune a filter for fear of messing it up–this way, they can still limit their view without changing the lens fundamentally.

1 comment. Share your thoughts »

Credit: IBM

Tagged: Computing, Twitter, social software, enterprise software, blogs, filtering, filtration, Information overload

Reprints and Permissions | Send feedback to the editor

From the Archives


Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me