Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo

 

Unsupported browser: Your browser does not meet modern web standards. See how it scores »

{ action.text }

A massive new project to scan the brains of 1,200 volunteers could finally give scientists a picture of the neural architecture of the human brain and help them understand the causes of certain neurological and psychological diseases.

The National Institutes of Health announced $40 million in funding this month for the five-year effort, dubbed the Human Connectome Project. Scientists will use new imaging technologies, some still under development, to create both structural and functional maps of the human brain.

The project is novel in its size; most brain-imaging studies have looked at tens to hundreds of brains. Scanning so many people will shed light on the normal variability within the brain structure of healthy adults, which will in turn provide a basis for examining how neural “wiring” differs in such disorders as autism and schizophrenia.

The researchers also plan to collect genetic and behavioral data, testing participants’ sensory and motor skills, memory, and other cognitive functions, and deposit this information along with brain scans in a public database (although the patients’ personal information will be stripped out). Scientists around the world can then use the database to search for the genetic and environmental factors that influence the structure of the brain.

“We want to learn as much as we can, not only about the typical patterns of brain connectivity, but also about the differences in wiring that make each of us a unique individual,” says David Van Essen, a neuroscientist at Washington University in St. Louis, who is one of the project leaders. “If you’re good at math, and I’m better at certain types of memory, can we identify some of the wiring characteristics that account for those differences?”

The most detailed studies to date of the neural circuits that connect one brain cell to another have focused on animal brains, because scientists can examine the animals’ living tissue cells and their networks under a microscope. “We don’t know how our species specifically is wired up,” says Michael Huerta, associate director of the Division of Neuroscience and Basic Behavioral Science at the National Institute of Mental Health, and director of the Connectome project. “There is an entire class of data that is missing from neuroscience that is fundamentally important for how the brain works and how it breaks down in different disorders.” And because researchers will be scanning only identical and fraternal twins and their siblings, the scientists can get a sense of the role that genetics and environment play in shaping brain structure. Structures of the brain that are highly dictated by genes will be more similar in identical twins than in fraternal twins, for example.

1 comment. Share your thoughts »

Credit: David Van Essen, Washington University

Tagged: Biomedicine, MRI, brain imaging, diffusion spectrum imaging, functional connectivity

Reprints and Permissions | Send feedback to the editor

From the Archives

Close

Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me