Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo

 

Unsupported browser: Your browser does not meet modern web standards. See how it scores »

{ action.text }

Using light-sensitive proteins from a single-celled alga and a tiny LED “cuff” placed on a nerve, researchers have triggered the leg muscles of mice to contract in response to millisecond pulses of light.

The study, published in the journal Nature Medicine, marks the first use of the nascent technology known as optogenetics to control muscle movements. Developed by study coauthor Karl Deisseroth, an associate professor of bioengineering and of psychiatry and behavioral science at Stanford University, optogenetics makes it possible to stimulate neurons with light by inserting the gene for a protein called channelrhodopsin-2, from a green alga. When a modified neuron is exposed to blue light, the protein initiates electrical activity inside the cell that then spreads from neuron to neuron. By controlling which neurons make the protein, as well as which cells are exposed to light, scientists can control neural activity in living animals with unprecedented precision. The paper’s other senior author, Scott Delp, a professor of bioengineering, mechanical engineering, and orthopedic surgery at Stanford, says that the optical control method provides “fantastic advantages over electrical stimulation” for his study of muscles and the biomechanics of human movement.

Members of Deisseroth’s lab had engineered mice to produce channelrhodopsin-2 in both the central and the peripheral nervous systems. Michael Llewellyn, a former graduate student in Delp’s lab, developed a tiny, implantable LED cuff to apply light to the nerve evenly. He placed the cuff on the sciatic nerves of anesthetized mice and triggered millisecond pulses of light. This caused the leg muscles of the mice to contract. When Llewellyn compared the muscle contractions stimulated by light to those generated using a similar electrical cuff, he found that the light-triggered contractions were much more similar to normal muscle activity.

Muscles are made up of two different fibers: small, slow, fatigue-resistant fibers that are typically used for tasks that require fine motor control over longer periods, and larger, faster fibers that can produce higher forces but are more fatigue-prone. In the body, the small, slow fibers are activated first, with the large, fast fibers reserved for quick bursts of power or speed. When muscles are stimulated with electrical pulses, the fast fibers activate first. With the optogenetic switch, however, the fibers were recruited in the normal, physiological order: slow fibers first, fast fibers second. By altering the intensity of the light, Llewellyn found that he could even trigger only the slow fibers–a feat not possible with electrical stimulation.

In the near term, Delp says, the technology will improve the studies that his lab and others do on muscle activity in animal models of stroke, palsies, ALS, and other neuromuscular disorders. He also hopes that in time–a long time, he concedes–such optical switches could be used to help patients with physical disabilities caused by nerve damage such as stroke, spinal cord injury, or cerebral palsy. One possibility, he says, would be to use optical stimulation in place of functional electrical stimulation (FES), in which electrical current is applied to specific nerves or muscles to trigger muscle contractions. The U.S. Food and Drug Administration has already approved FES devices that can restore hand function and bladder control to some paralyzed people. However, FES can quickly lead to muscle fatigue. Delp hopes that, particularly with grasping functions, using optical stimulation might result in better fatigue resistance and perhaps finer muscle control.

“This is a brilliant study, really beautiful science,” says Robert Kirsch, a bioengineer at Case Western Reserve University and associate director of the Cleveland Functional Electrical Stimulation Center; he was not involved in the research. “I think there are many [clinical implications],” he says, although, like Delp and Llewellyn, he notes that many high hurdles must be cleared–not least of which is developing a safe, effective way to deliver the channelrhodopsin-2 gene to nerve cells in humans. Otherwise, Kirsch says, “my one objection would be their implication that they’ve solved the fatigue problem with FES. I’m pretty sure that hasn’t happened.” Instead, Kirsch believes that most of the fatigue seen in FES patients is due to muscle atrophy and weakness that develop in the chronically paralyzed.

0 comments about this story. Start the discussion »

Credit: Nature

Tagged: Biomedicine, optogenetics, light-sensitive proteins

Reprints and Permissions | Send feedback to the editor

From the Archives

Close

Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me