Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo

 

Unsupported browser: Your browser does not meet modern web standards. See how it scores »

The events that take place inside of atoms occur at speeds that are normally much too fast to capture. Now researchers at IBM’s Almaden Research Center have developed a technique that lets them watch this atomic action with unprecedented resolution.

The researchers used the technique to flip the orientation of an atom’s spin, a fundamental quantum property, and then to measure how long the atom “remembered” this state before returning to its natural spin state. This is a first step toward developing a kind of computer memory that works on the atomic scale, and the technique could also be used by materials scientists to perform the basic research necessary in making more efficient organic solar materials.

Influencing and measuring an atom’s spin state is one way to make a quantum bit, or qubit, which can simultaneously serve as both a 1 and a 0 in a quantum computer. It is possible to take a static measurement of an atom’s spin, but until now it hasn’t been possible to watch an atom’s spin change over time.

Researchers led by Don Eigler and Andreas Heinrich at IBM’s lab in San Jose, California, were able to watch atomic spins flip, or “relax,” over time using a modified scanning tunneling microscope, or STM–an instrument IBM researchers invented in 1981. They captured images of the atom’s state every five nanoseconds–a million times faster than before.

The IBM researchers found that a single iron atom can store magnetic information in the form of spin for about one nanosecond. However, when the iron atom is near a copper atom, its quantum memory is prolonged, so that it takes about 200 nanoseconds for the spin to relax. The results were published last week in the journal Science.

“The information decays in 200 nanoseconds, but that’s a lot of time,” says Sebastian Loth, a member of the research team. “Current processors do several hundred cycles of calculations in that time.”

When the tip of an STM is brought very close to a surface, electrical current can flow between atoms on the surface and its tip. By moving over a surface, the microscope can generate a picture of it. And by analyzing the flow of current, it’s possible to learn about the atom’s magnetic state, including its spin.

1 comment. Share your thoughts »

Credit: IBM Research

Tagged: Computing, Materials, nanotechnology, IBM, imaging, physics, quantum computing, microscopy

Reprints and Permissions | Send feedback to the editor

From the Archives

Close

Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me