Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo

 

Unsupported browser: Your browser does not meet modern web standards. See how it scores »

{ action.text }

In the future, the computational module of a brain coprocessor may be powerful enough to assist in high-level human cognition or complex decision making. Of course, the augmentation of human intelligence has been one of the key goals of computer engineers for well over half a century. Indeed, if we relax the definition of brain coprocessor just a bit, so as not to require direct physical access to the brain, many consumer technologies being developed today are converging upon brain coprocessor-like architectures. A large number of new technologies are attempting to discover information useful to a user and to deliver this information to the user in real time. Also, these discovery and delivery processes are increasingly shaped by the environment (e.g., location) and history (e.g., social interactions, searches) of the user. Thus we are seeing a departure from the classical view (as initially anticipated by early thinkers about human-machine symbiosis such as J. C. R. Licklider) in which computers receive goals from humans, perform defined computations, and then provide the results back to humans.

Of course, giving machines the authority to serve as proactive human coprocessors, and allowing them to capture our attention with their computed priorities, has to be considered carefully, as anyone who has lost hours due to interruption by a slew of social-network updates or search-engine alerts can attest. How can we give the human brain access to increasingly proactive coprocessing technologies without losing sight of our overarching goals? One idea is to develop and deploy metrics that allow us to evaluate the IQ of a human plus a coprocessor, working together–evaluating the performance of collaborating natural and artificial intelligences in a broad battery of problem-solving contexts. After all, humans with Internet-based brain coprocessors (e.g., laptops running Web browsers) may be more distractible if the goals include long, focused writing tasks, but they may be better at synthesizing data broadly from disparate sources; a given brain coprocessor configuration may be good for some problems but bad for others. Thinking of emerging computational technologies as brain coprocessors forces us to think about them in terms of the impacts they have on the brain, positive and negative, and importantly provides a framework for thoughtfully engineering their direct, as well as their emergent, effects.

Ed Boyden is Assistant Professor of Biological Engineering and Brain and Cognitive Sciences at the Media Lab, whose Synthetic Neurobiology group works on neurotechnologies for systematic analysis and control of neural circuits.

Doug Fritz is a Media Lab PhD student in the Fluid Interfaces group, working on extending human capability through just-in-time processing that augments our interface to the world.

Brian Allen is a Media Lab PhD student in the Synthetic Neurobiology group, working to develop new approaches to understanding how the brain gives rise to emotion.


2 comments. Share your thoughts »

Credit: Technology Review

Tagged: Computing, brain, neuroscience, optogenetics, brain-computer interface, brain simulation

Reprints and Permissions | Send feedback to the editor

From the Archives

Close

Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me