Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo


Unsupported browser: Your browser does not meet modern web standards. See how it scores »

{ action.text }

Converting methane directly to valuable chemicals and liquid fuels is an industrial challenge that has defied the best minds in chemistry. Now catalyst developer Siluria Technologies claims to have solved the problem.

Siluria’s solution is a catalyst that efficiently turns methane into ethylene, the feedstock underpinning more than two-thirds of global chemical production. The Menlo Park, California-based firm, which raised $3.3 million from venture capital firms last year and expects to announce further financing this month, says it succeeded with a brute-force trial-and-error process that tested novel compounds with catalytic potential. “The problem is too difficult to analyze your way out of. We’re overwhelming the problem instead with a simple, sturdy experimental technique,” says Alex Tkachenko, Siluria’s CEO.

A cheap and efficient way of turning methane into liquid chemicals and fuels could free the chemical industry from its dependence on pricier and dirtier petroleum. But knocking off one of the four hydrogen atoms arrayed around methane’s sole carbon atom requires so much energy that the process tends to run out of control, burning up the entire gas molecule. “If you can’t stop it, you end up with CO2,” says Charles Musgrave, a computational chemist at the University of Colorado.

The quest to activate methane’s chemical potential has left a path of unrequited chemists. Catalysis design firm Catalytica spent five years and over $10 million to develop a sophisticated catalyst and process to turn methane into methanol, but its process proved too costly. And in 2008, Dow Chemical put up over $6.4 million for methane activation research led by teams at Northwestern University and the U.K.’s Cardiff University. “Dow had gone as far as they could. It’s a sign of how hard this problem really is that they’re going out and funding others in this way,” says Musgrave.

How might Siluria have outsmarted the chemists? By enlisting mindless viruses to handle the catalyst design. Its workhorse is a virus that’s 900 nanometers long and just nine nanometers in diameter. The virus can serve as a template for the formation of equally small nanowires when it’s exposed to metals and other elements under the right conditions. Siluria can create an endless variety of potential catalysts by mutating the virus’s protein coat so its surface guides nanowire formation, selecting the ratio of elements introduced to that template, and tweaking the timing and conditions of the process. To detect efficient methane activation catalysts, Siluria then subjects these structures to screening.

0 comments about this story. Start the discussion »

Credit: Siluria

Tagged: Business, Energy, battery, nanowires, chemicals, methane, Siluria

Reprints and Permissions | Send feedback to the editor

From the Archives


Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me