Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo


Unsupported browser: Your browser does not meet modern web standards. See how it scores »

{ action.text }

The tactile sensitivity of human skin is hard to re-create, especially over large, flexible surfaces. But two California research groups have made pressure-sensing devices that significantly advance the state of the art.

One, made by researchers at Stanford University, is based on organic electronics and is 1,000 times more sensitive than human skin. The second, made by researchers at the University of California, Berkeley, uses integrated arrays of nanowire transistors and requires very little power. Both devices are flexible and can be printed over large areas; they are described this week in separate papers in the journal Nature Materials.

Highly sensitive surfaces could help robots pick up delicate objects without breaking them, give prosthetics a sense of touch, and give surgeons finer control over tools used for minimally invasive surgery. “Our goal is to mimic the human skin,” says Zhenan Bao, professor of chemical engineering at Stanford. Human skin responds quickly to pressure and can detect objects as small as a grain of sand and light as an insect.

The core of Bao’s device consists of a clear silicon-containing polymer called PDMS. This material’s ability to store charge is directly related to its thickness. A few years ago, researchers led by Takao Someya at the University of Tokyo took advantage of this property, using PDMS as the insulating layer in flexible organic transistors that acted as pressure sensors. But these sensors were limited: when compressed, PDMS molecules change conformation, and it takes time for them to return to their original state.

Bao addressed this problem by patterning the polymer material with arrays of micropillars that stand up from the touchable surface. This design allows the material to flex and quickly return to its original shape, which means it’s possible to take pressure measurements in quick succession. The microstructuring also improves the sensitivity of the device. The gentlest pressure that human skin can detect is about one kilopascal; Bao’s devices can detect pressures that are 1,000 times more gentle.

This approach can be used to make flexible materials with inexpensive printing techniques, but the resulting device requires high voltages to operate. Ali Javey, professor of electrical engineering and computer science at the University of California, Berkeley, has built low-power tactile sensors based on arrays of inorganic nanowire transistors. The transistors are arranged beneath, and connected to, a layer of a commercially available conductive rubber that contains carbon nanoparticles. When the rubber is compressed, its electrical resistance changes, and this can be detected by the transistors. “The nanowires are being used as active electronics to run the tactile sensor on top,” he explains.

2 comments. Share your thoughts »

Credit: Linda Cicero, Stanford University News Report

Tagged: Computing, Materials, flexible electronics, nanowire, organic electronics, printed circuits, touch sensors, artificial skin, electronic skin

Reprints and Permissions | Send feedback to the editor

From the Archives


Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me