Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo


Unsupported browser: Your browser does not meet modern web standards. See how it scores »

{ action.text }

A computer might be able to discern your tastes in romance even better than you can.

A new dating site called Wings is trying to push the bounds of machine learning and statistical models for better matchmaking recommendations. Unlike sites that rely on questionnaires, Wings tries to understand who you are by picking up the social media bread crumbs you leave online. Among the intriguing findings: whether you have a tight-knit group of online friends tends to predict what sort of person you might like.

Launched this year, Wings turns the model of traditional online dating sites like eHarmony or on its head. Wings doesn’t ask you about yourself. It tells you. The service requires a Facebook account, which it uses to study your online social network, but it also can connect to your Netflix, Pandora,, Twitter, and Foursquare accounts to access data like movie-rental history and places you’ve been.

All that data is fed into the service’s recommendation engine. That system combines Bayesian modeling, a type of mathematical analysis that lets computers draw inferences from huge data sets, and machine learning, where the more data and feedback the algorithm is fed, the “smarter” it gets.

The idea is that the computer’s analysis of your behavior provides a richer analysis than what you’d say about yourself. “We serve as our own blind spot in that it’s difficult to accurately answer questions about oneself without biasing toward recent experience, current mood, etc.,” says Sunil Nagaraj, chief executive and cofounder of Triangulate, the company behind Wings.

Nagaraj founded Triangulate with two other Harvard graduates. The company raised $750,000 in July to expand and improve the service.

Because the dating service utilizes a recommendation engine instead of a simple search or questionnaire, it can draw some interesting and counterintuitive correlations on what leads to successful matches. For example, Nagaraj says, the density of one’s social network turns out to be an important factor. If your group of Facebook friends tends to be more closely knit, meaning that your friends are often friends with each other, you’re more likely to match with someone who also has a tight network of friends, rather than a loose association of acquaintances.

Wings has also found that couples tend to be well suited if they have similar percentages of friends from their own country versus other countries. It matters as well whether your Netflix rental or music playlist history tends toward the mainstream or underground. And couples that have lots of overlap in the types of people they follow on Twitter tend to match well, too.

1 comment. Share your thoughts »

Credit: Triangulate

Tagged: Web, social media, analytics, recommendation engine

Reprints and Permissions | Send feedback to the editor

From the Archives


Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me