Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo


Unsupported browser: Your browser does not meet modern web standards. See how it scores »

{ action.text }

One of the best places to put a solar panel is in the desert, where it’s sunny. But deserts are also dusty, which means the panels have to be washed frequently so the dust doesn’t stop them from capturing sunlight. New technology could provide a solution–by letting solar panels clean themselves.

The technology was developed for future rover missions to Mars, but it could work here on Earth to keep solar panels operating at peak capacity. It uses electrostatic charge to repel dust and force it to the edges of the panels. It can remove 90 percent of the dust on a solar panel in a two-minute cycle, says Malay Mazumder, a research professor at Boston University who led the work. The technology was described this week at the American Chemical Society meeting in Boston.

Dust that accumulates on solar panels and blocks the light can cripple rovers on the moon or Mars. The Spirit and Opportunity Mars rovers lasted longer than expected because occasional gusts of wind have cleared off their panels. “But we may not be lucky all of the time,” says Rao Surampudi, a project monitor at NASA’s Jet Propulsion Laboratory. Indeed, the Mars Pathfinder rover mission in the 1990s didn’t benefit from such winds.

Dust has also bedeviled solar installations on Earth. For example, dust storms have cut power production by 40 percent at a large, 10-megawatt solar power plant in the United Arab Emirates. Washing the panels can be time-consuming or require costly automation–and it takes a lot of water, a precious resource in the desert. “With this new technology, solar panels can be automatically cleaned without water or labor,” Mazumder says.

The system takes advantage of the fact that most dust particles, particularly in dry environments, have an electric charge. A transparent electrode material such as indium tin oxide delivers an alternating current to the top surface of the panel. As it swings between being positively and negatively charged, it creates an electric field that repels positively and negatively charged particles. The electric field also helps to impart a charge to uncharged dust particles, allowing them to be quickly repelled as they come in contact with the panel. The researchers have designed the system so that the electric field works its way from one side of the solar panel to the other, gradually moving the dust along until it falls off.

17 comments. Share your thoughts »

Credit: NASA JPL

Tagged: Energy, solar power, Mars, rovers, self-cleaning

Reprints and Permissions | Send feedback to the editor

From the Archives


Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me