Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo


Unsupported browser: Your browser does not meet modern web standards. See how it scores »

{ action.text }

An experimental drug designed to block the effects of a genetic mutation often found in patients with malignant melanoma, a deadly cancer with few existing treatments, significantly shrank tumors in about 80 percent of those who carried the mutation. The findings, published Wednesday in the New England Journal of Medicine, signal a major success for so-called targeted cancer therapies, which are designed to block the effects of genetic mutations that drive the growth of cancer cells.

“This study is a major breakthrough in cancer treatment, and for metastatic melanoma,” says Matthew Meyerson, an oncologist and researcher at the Dana Farber Cancer Institute in Boston. Meyerson was not involved in the study. “It’s a spectacular example of how genome-targeted therapies are beginning to help cancer patients.” The drug in the current study inhibits activity of a protein called BRAF, which is overactive in 50 to 60 percent of malignant melanomas.

Advances in genetic technologies over the last decade have allowed scientists to study the genetic mutations that underlie cancer in much greater detail. The result has been a new approach to drug design. Unlike chemotherapy, which can affect both healthy and cancerous cells and often triggers serious side effects, genetically targeted drugs act selectively on cancer cells that carry the mutation.

Only a handful of such drugs have been approved by the U.S. Food and Drug Administration, and most target rare mutations. The BRAF mutation, in comparison, is common. Discovered in 2002, the mutation disrupts regulation of the BRAF protein, making it continually active. The drug in the current study is under development by pharmaceutical giant Roche and Plexxikon, a startup based in Berkeley, CA. The drug is just one of a number of BRAF inhibitors currently in clinical tests.

Melanoma can be effectively treated with surgery in the early stages, but the prognosis is grim once the cancer has spread beyond the skin. The two currently available drugs work in only about 10 to 20 percent of patients. According to the new findings, 37 of 48 patients with the mutation responded to the new experimental drug, with their tumors shrinking by more than 30 percent. Tumors completely disappeared in three of those patients. About 30 percent of patients who took the drug the longest developed a specific type of squamous cell carcinoma, a tumor that usually doesn’t spread and typically resolves on its own.

Further studies are needed before the drug can be approved by the FDA. But because scientists can use genetic testing to select the patients for whom the drug is most likely to be effective, they require much smaller trials to show the drug works. Keith Flaherty, an oncologist at Massachusetts General Hospital who led the research, says the project reflects a new streamlined approach to clinical testing of cancer drugs that’s quicker and less expensive than traditional methods.

0 comments about this story. Start the discussion »

Credit: Peter MacCallum Cancer Centre/Plexxikon

Tagged: Biomedicine, cancer, genetics, drugs, drug development, personal genomics, genetic mutations

Reprints and Permissions | Send feedback to the editor

From the Archives


Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me