Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo


Unsupported browser: Your browser does not meet modern web standards. See how it scores »

{ action.text }

Rinzler’s new electronic devices, described online in the journal Nano Letters, also operate at a tenth of the voltage of conventional OLED electronics, which saves power. The Florida researchers have not yet made large-area OLED displays driven by the vertical transistor arrays, but Rinzler says the transistors operate at suitable current and voltage to do so. While the researchers have so far been making these arrays on glass, the techniques used to make them are compatible with flexible substrates and could be used to make flexible OLED displays.

The vertical electronic structure was first proposed in 1994 by Yang Yang, professor of materials science and engineering at the University of California, Los Angeles, and Alan Heeger, professor of materials science and engineering at the University of California, Santa Barbara. Heeger shared the 2000 Nobel Prize in Chemistry for the discovery and development of conductive polymers like the ones used in the new device. In the mid-1990s, Yang and Heeger began developing these devices through a company called UNIAX that was subsequently acquired by DuPont. When the two did their original work, the performance of the available materials wasn’t as good as it is today.

“Carbon nanotubes weren’t available in 1994,” says Yang. In Rinzler’s device, he says, the thin nanotube layer allows very little current leakage, a problem that drained power from previous designs. The Florida devices also switch much faster than was possible in the past. “They did an excellent job of making the device work much better. I’m sure this paper will have an important impact on organic electronics,” he says.

Rinzler is now working to simplify the OLED display architecture in hopes of further reducing manufacturing costs and complexity. Instead of building a light-emitting pixel next to transistors, Rinzler wants to build low-power organic transistors that emit light themselves. His group has demonstrated that it’s possible to make light-emitting organic transistors if the active materials are electroluminescent, but these transistors only operate at high voltages, making them impractical. Rinzler believes that the vertical, nanotube-electrode-based architecture could greatly improve the efficiency of these devices.

4 comments. Share your thoughts »

Credit: Andrew Rinzler

Tagged: Computing, Materials, electronics, manufacturing, TV, LCD, OLEDs, screen

Reprints and Permissions | Send feedback to the editor

From the Archives


Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me