Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo

 

Unsupported browser: Your browser does not meet modern web standards. See how it scores »

Organic light-emitting diode (OLED) displays are energy-efficient and crisp, but high manufacturing costs have kept them from being as widely available as liquid-crystal displays (LCDs), especially in larger devices such as TVs. A new type of OLED electronics could help bring down manufacturing costs and make the technology much more widely available.

“There is no good solution to make OLED electronics that can be scaled up inexpensively,” says Andrew Rinzler, professor of physics at the University of Florida. Rinzler led the work on developing a type of electronics for OLEDs that he hopes will provide such a solution. The work was funded in part by the venture capital firm Nano Holdings.

The pixels in OLED displays use transistors to stimulate organic molecules, which then emit different colors of light. OLED displays do not need the light-wasting filters that make LCDs such energy hogs. But LCDs dominate the market in large part because the amorphous-silicon transistor arrays used to drive LCDs can be made over areas as big as a single-car garage door and then sliced into smaller pieces to make displays for TVs and other devices. Manufacturing at this scale helps keep costs down.

OLED display makers can’t use the same electronics because switching the pixels in an OLED requires relatively high currents that rapidly burn out amorphous-silicon transistors. Instead, today’s OLED displays are built on more expensive polycrystalline-silicon transistor arrays. The largest OLED display on the market (in Europe, but not yet available in the U.S.) is a 15-inch model made by LG. It sells for just over $2,300; the same size LCD TV costs under $200.

Less-expensive OLED electronics could, in theory, be made by using organic materials for the electronics as well as the pixels. Transistors made using organic semiconductors provide the high currents needed to drive OLED pixels. But electrons move through conventional organic transistors slowly, which results in a display that doesn’t refresh the picture fast enough. To speed these transistors up, engineers have altered the design, shrinking components to bring the source and drain electrodes closer together and make the channel smaller. This makes the device faster because the electrons don’t have to travel as far through the organic material that makes up the channel, which can’t conduct the electrons very fast. But making such high-resolution devices requires expensive lithography techniques.

A less expensive method, developed by Rinzler and colleagues, is to bring the source and drain electrodes of a transistor closer together by stacking components on top of one another instead of side by side. Rinzler’s group, including graduate students Mitchell McCarthy and Bo Liu, made these transistors by depositing a film of aluminum on a glass substrate to act as the gate electrode, then oxidizing it to create a thin insulating layer on top. Next the researchers deposited an ultrathin, dilute layer of carbon nanotubes to act as a source electrode, followed by a layer of organic materials to act as the channel, and finally a top layer of gold as a drain electrode. Each of these films is very thin, enabling good performance without the need for high-resolution lithography techniques, says Rinzler.

4 comments. Share your thoughts »

Credit: Andrew Rinzler

Tagged: Computing, Materials, electronics, manufacturing, TV, LCD, OLEDs, screen

Reprints and Permissions | Send feedback to the editor

From the Archives

Close

Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me
×

A Place of Inspiration

Understand the technologies that are changing business and driving the new global economy.

September 23-25, 2014
Register »