Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo

 

Unsupported browser: Your browser does not meet modern web standards. See how it scores »

A computer chip that performs calculations using probabilities, instead of binary logic, could accelerate everything from online banking systems to the flash memory in smart phones and other gadgets.

Rewriting some fundamental features of computer chips, Lyric Semiconductor has unveiled its first “probability processor,” a silicon chip that computes with electrical signals that represent chances, not digital 1s and 0s.

“We’ve essentially started from scratch,” says Ben Vigoda, CEO and founder of the Boston-based startup. Vigoda’s PhD thesis underpins the company’s technology. Starting from scratch makes it possible to implement statistical calculations in a simpler, more power efficient way, he says.

And because that kind of math is at the core of many products, there are many potential applications. “To take one example, Amazon’s recommendations to you are based on probability,” says Vigoda. “Any time you buy [from] them, the fraud check on your credit card is also probability [based], and when they e-mail your confirmation, it passes through a spam filter that also uses probability.”

All those examples involve comparing different data to find the most likely fit. Implementing the math needed to do this is simpler with a chip that works with probabilities, says Vigoda, allowing smaller chips to do the same job at a faster rate. A processor that dramatically speeds up such probability-based calculations could find all kinds of uses. But Lyric will face challenges in proving the reliability and scalability of its product, and in showing that it can be easily programmed.

The electrical signals inside Lyric’s chips represent probabilities, instead of 1s and 0s. While the transistors of conventional chips are arranged into components called digital NAND gates, which can be used to implement all possible digital logic functions, those in a probability processor make building blocks known as Bayesian NAND gates. Bayesian probability is a field of mathematics named after the eighteenth century English statistician Thomas Bayes, who developed the early ideas on which it is based.

Whereas a conventional NAND gate outputs a “1” if neither of its inputs match, the output of a Bayesian NAND gate represents the odds that the two input probabilities match. This makes it possible to perform calculations that use probabilities as their input and output.

Lyric has been working on its technology in stealth mode since 2006, partly with funding from the U.S. Defense Advanced Research Projects Agency. DARPA is interested in potential defense applications that would involve working with information that isn’t clear cut–for example, radio signals distorted accidentally or otherwise, and machine vision systems that try to recognize actions or objects in images. “They’re interested in some James Bond-type applications,” says Vigoda.

10 comments. Share your thoughts »

Credit: Lyric Semiconductor

Tagged: Computing, silicon, startups, chips, microchips, flash memory, semiconductor, probability

Reprints and Permissions | Send feedback to the editor

From the Archives

Close

Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me