Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo

 

Unsupported browser: Your browser does not meet modern web standards. See how it scores »

For the last few months, Andre Flöter has been shaving with a diamond-tipped razor blade.

He’s not some nouveau riche flaunting the newest kind of bling. He’s the founder of GFD, a German company that for the last seven years has been selling blades that are coated with synthetic diamond and used for industrial purposes–such as medical scalpels and instruments that cut plastic sheeting. Now Flöter hopes to use the exceptional hardness of diamond to crack the multibillion-dollar market for consumer razor blades.

Seated in a café in Mannheim, Germany, a couple hours north of his office in Ulm (Albert Einstein’s birthplace), Flöter whips out a plastic-handled razor that looks like ones you have at home. But inserted into this one is a prototype of GFD’s diamond-tipped blades.

He demonstrates against his own arm hair how it cuts as smoothly as a regular razor. He hands it to me so I can try, and it feels like my regular razor. But one major difference, Flöter says, is that his diamond-tipped blade should last several years rather than a few weeks.

The body of the blade is made of tungsten carbide, a dense metal compound, and seems just like a typical commercial razor blade, except it is a little heavier and has a darker metallic color. The coating of synthetic diamond–carbon manipulated at the nanoscale–in the tip doesn’t make it look shiny at all.

Flöter won’t reveal details of how GFD creates a film of synthetic diamond. He’s more forthcoming about how the company’s blades, once made, are sharpened. The engineers take dozens of blades and stand them upright in a vacuum chamber. Then they hit the blades with ions of oxygen or chlorine gas that has been excited to a plasma state with an electric field. The process is akin to using extremely fine-grained sandpaper as a sharpener.

The resulting blade has a “radius of curvature”–the tiny edge of the blade, which is actually rounded at the microscopic level – of about 50 nanometers. That’s about 10 times sharper than the blades GFD sells for plastic sheet cutting. Flöter gives me his razor again: Not only does it cut when I press against my skin, as I would during a normal shave, but even just grazing the tips of my arm hair, the blade cuts with no effort at all.

To be sure, blades made this way would make razors much more expensive. But because they could last much longer than a cheap disposable razor, the blades could be cost-effective in the long run, perhaps paying for themselves in about a year, GFD hopes. First, though, Flöter needs a blade manufacturer to partner with his seven-employee company. If all goes well, his blades could hit the market within two or three years, he says.

It wouldn’t be the first time diamond blades were marketed; Schick used to sell a razor it called the FX Diamond. But it didn’t cost much more than standard blades; Flöter says Schick didn’t produce a substantially harder or longer-lasting blade because it didn’t use a pure diamond coating and didn’t sharpen it the way GFD does. A Schick spokeswoman declined to comment on GFD’s technology.

11 comments. Share your thoughts »

Credit: Gesellschaft fuer Diamantprodukte mbH

Tagged: Computing, Materials, materials

Reprints and Permissions | Send feedback to the editor

From the Archives

Close

Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me
×

A Place of Inspiration

Understand the technologies that are changing business and driving the new global economy.

September 23-25, 2014
Register »